QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#113502 | #6639. Disk Tree | Hegdahl | Compile Error | / | / | C++14 | 6.0kb | 2023-06-18 09:23:34 | 2023-06-18 09:23:35 |
Judging History
你现在查看的是最新测评结果
- [2023-08-10 23:21:45]
- System Update: QOJ starts to keep a history of the judgings of all the submissions.
- [2023-06-18 09:23:35]
- 评测
- 测评结果:Compile Error
- 用时:0ms
- 内存:0kb
- [2023-06-18 09:23:34]
- 提交
answer
#include <bits/stdc++.h>
// <graph/ufds.hpp>
#include <optional>
#include <utility>
#include <vector>
template <class Container = std::vector<int>, bool path_compression = true>
struct UFDS {
Container a;
UFDS(int n) : a(n, -1) {}
int find(int i) {
if constexpr (path_compression) {
return a[i] < 0 ? i : a[i] = find(a[i]);
} else {
while (a[i] >= 0) i = a[i];
return i;
}
}
std::optional<std::pair<int, int>> unite(int i, int j) {
i = find(i), j = find(j);
if (i == j) return std::nullopt;
if (-a[i] < -a[j]) std::swap(i, j);
a[i] = a[i] + a[j];
a[j] = i;
return std::make_pair(i, j);
}
};
// </graph/ufds.hpp>
#define rep(i, a, b) for (int i = (a); i < (b); ++i)
using std::ostream;
using std::vector;
using std::tie;
template<class T>
auto sz(T &&x) -> int {
return static_cast<int>(std::size(x));
}
template <class T> int sgn(T x) { return (x > 0) - (x < 0); }
template<class T>
struct Point {
typedef Point P;
T x, y;
explicit Point(T x_=0, T y_=0) : x(x_), y(y_) {}
bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }
bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
P operator+(P p) const { return P(x+p.x, y+p.y); }
P operator-(P p) const { return P(x-p.x, y-p.y); }
P operator*(T d) const { return P(x*d, y*d); }
P operator/(T d) const { return P(x/d, y/d); }
T dot(P p) const { return x*p.x + y*p.y; }
T cross(P p) const { return x*p.y - y*p.x; }
T cross(P a, P b) const { return (a-*this).cross(b-*this); }
T dist2() const { return x*x + y*y; }
double dist() const { return sqrt((double)dist2()); }
// angle to x-axis in interval [-pi, pi]
double angle() const { return atan2(y, x); }
P unit() const { return *this/dist(); } // makes dist()=1
P perp() const { return P(-y, x); } // rotates +90 degrees
P normal() const { return perp().unit(); }
// returns point rotated 'a' radians ccw around the origin
P rotate(double a) const {
return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
friend ostream& operator<<(ostream& os, P p) {
return os << "(" << p.x << "," << p.y << ")"; }
};
template<class T> struct Point3D {
typedef Point3D P;
typedef const P& R;
T x, y, z;
explicit Point3D(T x_=0, T y_=0, T z_=0) : x(x_), y(y_), z(z_) {}
bool operator<(R p) const {
return tie(x, y, z) < tie(p.x, p.y, p.z); }
bool operator==(R p) const {
return tie(x, y, z) == tie(p.x, p.y, p.z); }
P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
P operator*(T d) const { return P(x*d, y*d, z*d); }
P operator/(T d) const { return P(x/d, y/d, z/d); }
T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
P cross(R p) const {
return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
}
T dist2() const { return x*x + y*y + z*z; }
double dist() const { return sqrt((double)dist2()); }
//Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
double phi() const { return atan2(y, x); }
//Zenith angle (latitude) to the z-axis in interval [0, pi]
double theta() const { return atan2(sqrt(x*x+y*y),z); }
P unit() const { return *this/(T)dist(); } //makes dist()=1
//returns unit vector normal to *this and p
P normal(P p) const { return cross(p).unit(); }
//returns point rotated 'angle' radians ccw around axis
P rotate(double angle, P axis) const {
double s = sin(angle), c = cos(angle); P u = axis.unit();
return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
}
};
typedef Point3D<double> P3;
struct PR {
void ins(int x) { (a == -1 ? a : b) = x; }
void rem(int x) { (a == x ? a : b) = -1; }
int cnt() { return (a != -1) + (b != -1); }
int a, b;
};
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
assert(sz(A) >= 4);
vector<vector<PR>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
vector<F> FS;
auto mf = [&](int i, int j, int k, int l) {
P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
if (q.dot(A[l]) > q.dot(A[i]))
q = q * -1;
F f{q, i, j, k};
E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
FS.push_back(f);
};
rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
mf(i, j, k, 6 - i - j - k);
rep(i,4,sz(A)) {
rep(j,0,sz(FS)) {
F f = FS[j];
if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
E(a,b).rem(f.c);
E(a,c).rem(f.b);
E(b,c).rem(f.a);
std::swap(FS[j--], FS.back());
FS.pop_back();
}
}
int nw = sz(FS);
rep(j,0,nw) {
F f = FS[j];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
C(a, b, c); C(a, c, b); C(b, c, a);
}
}
for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
A[it.c] - A[it.a]).dot(it.q) <= 0) std::swap(it.c, it.b);
return FS;
};
template<class P, class F>
void delaunay(vector<P>& ps, F trifun) {
if (sz(ps) == 3) { int d = (ps[0].cross(ps[1], ps[2]) < 0);
trifun(0,1+d,2-d); }
vector<P3> p3;
for (P p : ps) p3.emplace_back(p.x, p.y, p.dist2());
if (sz(ps) > 3) for(auto t:hull3d(p3)) if ((p3[t.b]-p3[t.a]).
cross(p3[t.c]-p3[t.a]).dot(P3(0,0,1)) < 0)
trifun(t.a, t.c, t.b);
}
int main() {
std::cin.tie(0)->sync_with_stdio(0);
int n; std::cin >> n;
std::vector<int> radii(n);
vector<Point<int>> centers(n);
for (int i = 0; i < n; ++i) {
std::cin >> centers[i].x >> centers[i].y >> radii[i];
}
vector<std::tuple<double, int, int>> edges;
auto add_edge = [&](int i, int j) {
double d = (centers[i] - centers[j]).dist() - radii[i] - radii[j];
edges.emplace_back(d, i, j);
};
if (n <= 10) {
for (int i = 0; i < n; ++i) {
for (int j = i+1; j < n; ++j) {
add_edge(i, j);
}
}
} else {
delaunay(centers, [&](int a, int b, int c) {
add_edge(a, b);
add_edge(b, c);
add_edge(c, a);
});
}
std::sort(edges.begin(), edges.end());
auto uf = UFDS(n);
std::cout << "YES\n";
for (auto [d, i, j] : edges) {
if (uf.unite(i, j)) {
std::cout << centers[i].x << ' ' << centers[i].y << " " << centers[j].x << ' ' << centers[j].y << "\n";
}
}
}
詳細信息
answer.code:18:8: error: ‘optional’ in namespace ‘std’ does not name a template type 18 | std::optional<std::pair<int, int>> unite(int i, int j) { | ^~~~~~~~ answer.code:18:3: note: ‘std::optional’ is only available from C++17 onwards 18 | std::optional<std::pair<int, int>> unite(int i, int j) { | ^~~ answer.code: In member function ‘int UFDS<Container, path_compression>::find(int)’: answer.code:11:8: warning: ‘if constexpr’ only available with ‘-std=c++17’ or ‘-std=gnu++17’ 11 | if constexpr (path_compression) { | ^~~~~~~~~ answer.code: In function ‘int sz(T&&)’: answer.code:37:32: error: ‘size’ is not a member of ‘std’ 37 | return static_cast<int>(std::size(x)); | ^~~~ answer.code: In function ‘int main()’: answer.code:195:17: error: missing template arguments before ‘(’ token 195 | auto uf = UFDS(n); | ^ answer.code:197:13: warning: structured bindings only available with ‘-std=c++17’ or ‘-std=gnu++17’ 197 | for (auto [d, i, j] : edges) { | ^