QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#113356 | #5466. Permutation Compression | arad | WA | 1ms | 3508kb | C++17 | 6.6kb | 2023-06-17 10:25:03 | 2023-06-17 10:25:06 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <vector>
namespace atcoder {
// Reference: https://en.wikipedia.org/wiki/Fenwick_tree
template <class T> struct fenwick_tree {
using U = internal::to_unsigned_t<T>;
public:
fenwick_tree() : _n(0) {}
fenwick_tree(int n) : _n(n), data(n) {}
void add(int p, T x) {
assert(0 <= p && p < _n);
p++;
while (p <= _n) {
data[p - 1] += U(x);
p += p & -p;
}
}
T sum(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
return sum(r) - sum(l);
}
private:
int _n;
std::vector<U> data;
U sum(int r) {
U s = 0;
while (r > 0) {
s += data[r - 1];
r -= r & -r;
}
return s;
}
};
} // namespace atcoder
using namespace atcoder;
using ll = long long;
using VI = vector<int>;
using VVI = vector<VI>;
using VL = vector<ll>;
using VVL = vector<VL>;
using VD = vector<double>;
using VVD = vector<VD>;
using VS = vector<string>;
using P = pair<ll,ll>;
using VP = vector<P>;
#define rep(i, n) for (ll i = 0; i < ll(n); i++)
#define out(x) cout << x << endl
#define dout(x) cout << fixed << setprecision(10) << x << endl
#define all(a) (a).begin(),(a).end()
#define rall(a) (a).rbegin(),(a).rend()
#define sz(x) (int)(x.size())
#define re0 return 0
#define pcnt __builtin_popcountll
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
constexpr int inf = 1e9;
constexpr ll INF = 1e18;
//using mint = modint1000000007;
//using mint = modint998244353;
int di[4] = {1,0,-1,0};
int dj[4] = {0,1,0,-1};
void solve(){
int n,m,k;
cin >> n >> m >> k;
fenwick_tree<int> fw(n);
VI a(n),b(m),l(k);
unordered_set<int> stb;
rep(i,n) cin >> a[i];
rep(i,m) cin >> b[i];
rep(i,k) cin >> l[i];
int cur = 0;
rep(i,n){
if(cur < m && a[i] == b[cur]){
cur++;
}
}
if(cur != m){
out("NO");
return;
}
rep(i,m) stb.insert(b[i]);
//部分列判定
set<int> wall;
wall.insert(-1);
wall.insert(n);
VP x(n);
rep(i,n){
x[i] = P(a[i],i);
}
sort(rall(x));
VL need;
rep(i,n){
ll num = x[i].first;
ll id = x[i].second;
if(stb.count(num)){
wall.insert(id);
} else {
auto itrr = wall.lower_bound(num);
auto itrl = prev(itrr);
ll len = *itrr-*itrl-1;
//cout << num << ' ' << len << endl;
len -= fw.sum(*itrl+1,*itrr);
need.emplace_back(len);
fw.add(id,1);
}
}
sort(all(need));
sort(all(l));
if(sz(need) > sz(l)){
out("NO");
return;
}
rep(i,sz(need)){
if(need[i] < l[i]){
out("NO");
return;
}
}
out("YES");
}
int main(){
int t;
cin >> t;
rep(ti,t) solve();
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3508kb
input:
3 5 2 3 5 1 3 2 4 5 2 1 2 4 5 5 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 3 2 2 3 1 2 3 2 2 3
output:
YES YES NO
result:
ok 3 lines
Test #2:
score: -100
Wrong Answer
time: 0ms
memory: 3444kb
input:
100 2 1 2 2 1 2 1 1 2 1 2 1 2 1 2 2 2 1 1 1 2 1 2 6 1 5 3 4 2 5 6 1 3 5 2 1 1 1 6 1 6 2 1 3 6 4 5 1 4 1 2 2 1 4 3 3 2 2 1 3 2 1 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 2 1 2 4 4 3 2 1 3 4 2 1 3 4 4 3 1 1 1 1 1 1 1 6 5 1 6 2 5 4 3 1 6 2 4 3 1 4 1 1 1 1 1 1 6 5 3 3 6 1 4 5 2 3 6 1 4 2 3 3 4 4 3 4 3 4 ...
output:
YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES NO YES NO YES YES NO YES YES YES YES YES YES YES YES YES YES NO NO NO YES YES NO NO YES YES YES YES YES YES YES YES YES YES YES YES NO YES YES YES YES YES YES NO YES YES YES YES YES YES YES NO YES YES YES YES YES...
result:
wrong answer 25th lines differ - expected: 'YES', found: 'NO'