QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#110387#1825. The King's GuardsNyaanWA 152ms12604kbC++1728.2kb2023-06-01 20:13:512023-06-01 20:13:53

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-06-01 20:13:53]
  • 评测
  • 测评结果:WA
  • 用时:152ms
  • 内存:12604kb
  • [2023-06-01 20:13:51]
  • 提交

answer

/**
 * date   : 2023-06-01 21:13:26
 * author : Nyaan
 */

#define NDEBUG

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility

namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N,F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

}  // namespace Nyaan


// bit operation

namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan


// inout

namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan


// debug


#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif


// macro

#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)


namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }


//








namespace atcoder {
namespace internal {

template <class E> struct csr {
    std::vector<int> start;
    std::vector<E> elist;
    csr(int n, const std::vector<std::pair<int, E>>& edges)
        : start(n + 1), elist(edges.size()) {
        for (auto e : edges) {
            start[e.first + 1]++;
        }
        for (int i = 1; i <= n; i++) {
            start[i] += start[i - 1];
        }
        auto counter = start;
        for (auto e : edges) {
            elist[counter[e.first]++] = e.second;
        }
    }
};

}  // namespace internal

}  // namespace atcoder





namespace atcoder {

namespace internal {

template <class T> struct simple_queue {
    std::vector<T> payload;
    int pos = 0;
    void reserve(int n) { payload.reserve(n); }
    int size() const { return int(payload.size()) - pos; }
    bool empty() const { return pos == int(payload.size()); }
    void push(const T& t) { payload.push_back(t); }
    T& front() { return payload[pos]; }
    void clear() {
        payload.clear();
        pos = 0;
    }
    void pop() { pos++; }
};

}  // namespace internal

}  // namespace atcoder



namespace atcoder {

template <class Cap, class Cost> struct mcf_graph {
  public:
    mcf_graph() {}
    mcf_graph(int n) : _n(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        assert(0 <= cost);
        int m = int(_edges.size());
        _edges.push_back({from, to, cap, 0, cost});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(_edges.size());
        assert(0 <= i && i < m);
        return _edges[i];
    }
    std::vector<edge> edges() { return _edges; }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);

        int m = int(_edges.size());
        std::vector<int> edge_idx(m);

        auto g = [&]() {
            std::vector<int> degree(_n), redge_idx(m);
            std::vector<std::pair<int, _edge>> elist;
            elist.reserve(2 * m);
            for (int i = 0; i < m; i++) {
                auto e = _edges[i];
                edge_idx[i] = degree[e.from]++;
                redge_idx[i] = degree[e.to]++;
                elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}});
                elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}});
            }
            auto _g = internal::csr<_edge>(_n, elist);
            for (int i = 0; i < m; i++) {
                auto e = _edges[i];
                edge_idx[i] += _g.start[e.from];
                redge_idx[i] += _g.start[e.to];
                _g.elist[edge_idx[i]].rev = redge_idx[i];
                _g.elist[redge_idx[i]].rev = edge_idx[i];
            }
            return _g;
        }();

        auto result = slope(g, s, t, flow_limit);

        for (int i = 0; i < m; i++) {
            auto e = g.elist[edge_idx[i]];
            _edges[i].flow = _edges[i].cap - e.cap;
        }

        return result;
    }

  private:
    int _n;
    std::vector<edge> _edges;

    // inside edge
    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<Cap, Cost>> slope(internal::csr<_edge>& g,
                                            int s,
                                            int t,
                                            Cap flow_limit) {
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge

        // dual_dist[i] = (dual[i], dist[i])
        std::vector<std::pair<Cost, Cost>> dual_dist(_n);
        std::vector<int> prev_e(_n);
        std::vector<bool> vis(_n);
        struct Q {
            Cost key;
            int to;
            bool operator<(Q r) const { return key > r.key; }
        };
        std::vector<int> que_min;
        std::vector<Q> que;
        auto dual_ref = [&]() {
            for (int i = 0; i < _n; i++) {
                dual_dist[i].second = std::numeric_limits<Cost>::max();
            }
            std::fill(vis.begin(), vis.end(), false);
            que_min.clear();
            que.clear();

            // que[0..heap_r) was heapified
            size_t heap_r = 0;

            dual_dist[s].second = 0;
            que_min.push_back(s);
            while (!que_min.empty() || !que.empty()) {
                int v;
                if (!que_min.empty()) {
                    v = que_min.back();
                    que_min.pop_back();
                } else {
                    while (heap_r < que.size()) {
                        heap_r++;
                        std::push_heap(que.begin(), que.begin() + heap_r);
                    }
                    v = que.front().to;
                    std::pop_heap(que.begin(), que.end());
                    que.pop_back();
                    heap_r--;
                }
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
                for (int i = g.start[v]; i < g.start[v + 1]; i++) {
                    auto e = g.elist[i];
                    if (!e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual_dist[e.to].first + dual_v;
                    if (dual_dist[e.to].second - dist_v > cost) {
                        Cost dist_to = dist_v + cost;
                        dual_dist[e.to].second = dist_to;
                        prev_e[e.to] = e.rev;
                        if (dist_to == dist_v) {
                            que_min.push_back(e.to);
                        } else {
                            que.push_back(Q{dist_to, e.to});
                        }
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) +
                //         (shortest(s, v) + dual[s] - dual[v]) = - shortest(s,
                //         t) + dual[t] + shortest(s, v) = shortest(s, v) -
                //         shortest(s, t) >= 0 - (n-1)C
                dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second;
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost_per_flow = -1;
        std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap);
            }
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                auto& e = g.elist[prev_e[v]];
                e.cap += c;
                g.elist[e.rev].cap -= c;
            }
            Cost d = -dual_dist[s].first;
            flow += c;
            cost += c * d;
            if (prev_cost_per_flow == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost_per_flow = d;
        }
        return result;
    }
};

}  // namespace atcoder





struct RollbackUnionFind {
  vector<int> data;
  stack<pair<int, int> > history;
  int inner_snap;

  RollbackUnionFind(int sz) : inner_snap(0) { data.assign(sz, -1); }

  bool unite(int x, int y) {
    x = find(x), y = find(y);
    history.emplace(x, data[x]);
    history.emplace(y, data[y]);
    if (x == y) return false;
    if (data[x] > data[y]) swap(x, y);
    data[x] += data[y];
    data[y] = x;
    return true;
  }

  int find(int k) {
    if (data[k] < 0) return k;
    return find(data[k]);
  }

  int same(int x, int y) { return find(x) == find(y); }

  int size(int k) { return (-data[find(k)]); }

  void undo() {
    data[history.top().first] = history.top().second;
    history.pop();
    data[history.top().first] = history.top().second;
    history.pop();
  }

  void snapshot() { inner_snap = int(history.size() >> 1); }

  int get_state() { return int(history.size() >> 1); }

  void rollback(int state = -1) {
    if (state == -1) state = inner_snap;
    state <<= 1;
    assert(state <= (int)history.size());
    while (state < (int)history.size()) undo();
  }
};

/**
 * @brief RollbackつきUnion Find
 * @docs docs/data-structure/rollback-union-find.md
 */






template <typename T>
struct edge {
  int src, to;
  T cost;

  edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {}
  edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {}

  edge &operator=(const int &x) {
    to = x;
    return *this;
  }

  operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnweightedGraph = vector<vector<int>>;

// Input of (Unweighted) Graph
UnweightedGraph graph(int N, int M = -1, bool is_directed = false,
                      bool is_1origin = true) {
  UnweightedGraph g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    if (is_1origin) x--, y--;
    g[x].push_back(y);
    if (!is_directed) g[y].push_back(x);
  }
  return g;
}

// Input of Weighted Graph
template <typename T>
WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,
                        bool is_1origin = true) {
  WeightedGraph<T> g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    cin >> c;
    if (is_1origin) x--, y--;
    g[x].emplace_back(x, y, c);
    if (!is_directed) g[y].emplace_back(y, x, c);
  }
  return g;
}

// Input of Edges
template <typename T>
Edges<T> esgraph(int N, int M, int is_weighted = true, bool is_1origin = true) {
  Edges<T> es;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    if (is_weighted)
      cin >> c;
    else
      c = 1;
    if (is_1origin) x--, y--;
    es.emplace_back(x, y, c);
  }
  return es;
}

// Input of Adjacency Matrix
template <typename T>
vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,
                           bool is_directed = false, bool is_1origin = true) {
  vector<vector<T>> d(N, vector<T>(N, INF));
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    if (is_weighted)
      cin >> c;
    else
      c = 1;
    if (is_1origin) x--, y--;
    d[x][y] = c;
    if (!is_directed) d[y][x] = c;
  }
  return d;
}

/**
 * @brief グラフテンプレート
 * @docs docs/graph/graph-template.md
 */


// 一般のグラフのstからの距離!!!!
// unvisited nodes : d = -1
vector<int> Depth(const UnweightedGraph &g, int start = 0) {
  int n = g.size();
  vector<int> ds(n, -1);
  ds[start] = 0;
  queue<int> q;
  q.push(start);
  while (!q.empty()) {
    int c = q.front();
    q.pop();
    int dc = ds[c];
    for (auto &d : g[c]) {
      if (ds[d] == -1) {
        ds[d] = dc + 1;
        q.push(d);
      }
    }
  }
  return ds;
}

// Depth of Rooted Weighted Tree
// unvisited nodes : d = -1
template <typename T>
vector<T> Depth(const WeightedGraph<T> &g, int start = 0) {
  vector<T> d(g.size(), -1);
  auto dfs = [&](auto rec, int cur, T val, int par = -1) -> void {
    d[cur] = val;
    for (auto &dst : g[cur]) {
      if (dst == par) continue;
      rec(rec, dst, val + dst.cost, cur);
    }
  };
  dfs(dfs, start, 0);
  return d;
}

// Diameter of Tree
// return value : { {u, v}, length }
pair<pair<int, int>, int> Diameter(const UnweightedGraph &g) {
  auto d = Depth(g, 0);
  int u = max_element(begin(d), end(d)) - begin(d);
  d = Depth(g, u);
  int v = max_element(begin(d), end(d)) - begin(d);
  return make_pair(make_pair(u, v), d[v]);
}

// Diameter of Weighted Tree
// return value : { {u, v}, length }
template <typename T>
pair<pair<int, int>, T> Diameter(const WeightedGraph<T> &g) {
  auto d = Depth(g, 0);
  int u = max_element(begin(d), end(d)) - begin(d);
  d = Depth(g, u);
  int v = max_element(begin(d), end(d)) - begin(d);
  return make_pair(make_pair(u, v), d[v]);
}

// nodes on the path u-v ( O(N) )
template <typename G>
vector<int> Path(G &g, int u, int v) {
  vector<int> ret;
  int end = 0;
  auto dfs = [&](auto rec, int cur, int par = -1) -> void {
    ret.push_back(cur);
    if (cur == v) {
      end = 1;
      return;
    }
    for (int dst : g[cur]) {
      if (dst == par) continue;
      rec(rec, dst, cur);
      if (end) return;
    }
    if (end) return;
    ret.pop_back();
  };
  dfs(dfs, u);
  return ret;
}

/**
 * @brief グラフユーティリティ
 * @docs docs/graph/graph-utility.md
 */






struct UnionFind {
  vector<int> data;
  UnionFind(int N) : data(N, -1) {}

  int find(int k) { return data[k] < 0 ? k : data[k] = find(data[k]); }

  int unite(int x, int y) {
    if ((x = find(x)) == (y = find(y))) return false;
    if (data[x] > data[y]) swap(x, y);
    data[x] += data[y];
    data[y] = x;
    return true;
  }

  // f ... merge function
  template<typename F>
  int unite(int x, int y,const F &f) {
    if ((x = find(x)) == (y = find(y))) return false;
    if (data[x] > data[y]) swap(x, y);
    data[x] += data[y];
    data[y] = x;
    f(x, y);
    return true;
  }

  int size(int k) { return -data[find(k)]; }

  int same(int x, int y) { return find(x) == find(y); }
};

/**
 * @brief Union Find(Disjoint Set Union)
 * @docs docs/data-structure/union-find.md
 */


template <typename T>
T kruskal(int N, Edges<T> &es) {
  sort(begin(es), end(es),
       [&](edge<T> a, edge<T> b) { return a.cost < b.cost; });
  UnionFind uf(N);
  T ret = 0;
  for (edge<T> &e : es) {
    if (uf.same(e.src, e.to)) continue;
    ret += e.cost;
    uf.unite(e.src, e.to);
  }
  return ret;
}





template <typename T>
struct has_cost {
 private:
  template <typename U>
  static auto confirm(U u) -> decltype(u.cost, std::true_type());
  static auto confirm(...) -> std::false_type;

 public:
  enum : bool { value = decltype(confirm(std::declval<T>()))::value };
};

template <typename T>
vector<vector<T>> inverse_tree(const vector<vector<T>>& g) {
  int N = (int)g.size();
  vector<vector<T>> rg(N);
  for (int i = 0; i < N; i++) {
    for (auto& e : g[i]) {
      if constexpr (is_same<T, int>::value) {
        rg[e].push_back(i);
      } else if constexpr (has_cost<T>::value) {
        rg[e].emplace_back(e.to, i, e.cost);
      } else {
        assert(0);
      }
    }
  }
  return rg;
}

template <typename T>
vector<vector<T>> rooted_tree(const vector<vector<T>>& g, int root = 0) {
  int N = (int)g.size();
  vector<vector<T>> rg(N);
  vector<char> v(N, false);
  v[root] = true;
  queue<int> que;
  que.emplace(root);
  while (!que.empty()) {
    auto p = que.front();
    que.pop();
    for (auto& e : g[p]) {
      if (v[e] == false) {
        v[e] = true;
        que.push(e);
        rg[p].push_back(e);
      }
    }
  }
  return rg;
}

/**
 * @brief 根付き木・逆辺からなる木への変換
 */



/**
 * @brief Primal Dual(最小費用流)
 * @docs docs/primal-dual.md
 */
template <typename flow_t, typename cost_t>
struct PrimalDual {
  struct edge {
    int to;
    flow_t cap;
    cost_t cost;
    int rev;
    bool isrev;
  };

  vector<vector<edge> > graph;
  vector<cost_t> potential, min_cost;
  vector<int> prevv, preve;
  const cost_t INF;

  PrimalDual(int V) : graph(V), INF(numeric_limits<cost_t>::max()) {}

  void add_edge(int from, int to, flow_t cap, cost_t cost) {
    graph[from].emplace_back(
        (edge){to, cap, cost, (int)graph[to].size(), false});
    graph[to].emplace_back(
        (edge){from, 0, -cost, (int)graph[from].size() - 1, true});
  }

  cost_t min_cost_flow(int s, int t, flow_t f) {
    int V = (int)graph.size();
    cost_t ret = 0;
    using Pi = pair<cost_t, int>;
    priority_queue<Pi, vector<Pi>, greater<Pi> > que;
    potential.assign(V, 0);
    preve.assign(V, -1);
    prevv.assign(V, -1);

    while (f > 0) {
      min_cost.assign(V, INF);
      que.emplace(0, s);
      min_cost[s] = 0;
      while (!que.empty()) {
        Pi p = que.top();
        que.pop();
        if (min_cost[p.second] < p.first) continue;
        for (int i = 0; i < (int)graph[p.second].size(); i++) {
          edge &e = graph[p.second][i];
          cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] -
                            potential[e.to];
          if (e.cap > 0 && min_cost[e.to] > nextCost) {
            min_cost[e.to] = nextCost;
            prevv[e.to] = p.second, preve[e.to] = i;
            que.emplace(min_cost[e.to], e.to);
          }
        }
      }
      if (min_cost[t] == INF) return -1;
      for (int v = 0; v < V; v++) potential[v] += min_cost[v];
      flow_t addflow = f;
      for (int v = t; v != s; v = prevv[v]) {
        addflow = min(addflow, graph[prevv[v]][preve[v]].cap);
      }
      f -= addflow;
      ret += addflow * potential[t];
      for (int v = t; v != s; v = prevv[v]) {
        edge &e = graph[prevv[v]][preve[v]];
        e.cap -= addflow;
        graph[v][e.rev].cap += addflow;
      }
    }
    return ret;
  }

  void output() {
    for (int i = 0; i < graph.size(); i++) {
      for (auto &e : graph[i]) {
        if (e.isrev) continue;
        auto &rev_e = graph[e.to][e.rev];
        cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/"
             << rev_e.cap + e.cap << ")" << endl;
      }
    }
  }
};

using namespace Nyaan;

void q() {
  inl(N, M, G);
  Edges<ll> es;

  rep(i, M) {
    inl(u, v, w);
    --u, --v;
    es.emplace_back(u, v, w);
  }
  vvi v;
  rep(i, G) {
    ini(n);
    vi a(n);
    in(a);
    each(x, a)-- x;
    v.push_back(a);
  }
  sort(all(es), [](auto &e1, auto &e2) { return e1.cost < e2.cost; });
  {
    RollbackUnionFind uf(N);
    Edges<ll> nes;
    each(e, es) {
      if (uf.same(e.src, e.to)) {
        continue;
      }
      nes.push_back(e);
      uf.unite(e.src, e.to);
    }
    es = nes;
  }

  WeightedGraph<ll> g(N);
  each(e, es) {
    g[e.src].emplace_back(e.src, e.to, e.cost);
    g[e.to].emplace_back(e.to, e.src, e.cost);
  }
  g = rooted_tree(g);
  trc(g);

  PrimalDual<ll, ll> flow(G + 2 * N + 2);
  int S = G + 2 * N + 0;
  int T = G + 2 * N + 1;

  rep(i, G) flow.add_edge(S, i, 1, 0);
  rep(i, G) each(j, v[i]) flow.add_edge(i, G + j, 1, 0);
  rep(i, N) flow.add_edge(G + i, G + N + i, 1, 0);

  ll ans = 0, INF = TEN(9);
  flow.add_edge(G + N + 0, T, 1, INF - INF);
  auto dfs = [&](auto rc, int c) -> void {
    for (auto &d : g[c]) {
      ans += d.cost;
      flow.add_edge(G + N + d, T, 1, INF - d.cost);
      flow.add_edge(G + N + d, G + c, 1, 0);
      rc(rc, d);
    }
  };
  dfs(dfs, 0);

  auto co = flow.min_cost_flow(S, T, G);
  if (co == -1) die(-1);
  co = INF * G - co;
  out(ans - (co - TEN(9)));
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 2ms
memory: 3392kb

input:

5 6 2
1 2 1
1 3 4
2 4 2
2 5 5
3 4 7
4 5 3
2 1 2
2 2 4

output:

8

result:

ok answer is '8'

Test #2:

score: 0
Accepted
time: 2ms
memory: 3444kb

input:

10 19 6
1 5 761
6 8 606
3 9 648
2 4 115
5 8 814
1 2 712
4 10 13
5 10 797
3 4 956
1 7 73
5 7 192
2 7 110
5 9 302
3 6 120
6 9 494
1 3 668
3 7 966
6 10 974
3 8 41
2 10 5
3 6 4 3
2 1 7
2 10 8
3 10 7 8
2 2 1

output:

429

result:

ok answer is '429'

Test #3:

score: 0
Accepted
time: 0ms
memory: 3452kb

input:

10 43 3
1 3 656
2 6 856
4 10 99
5 6 900
2 7 766
4 7 582
2 8 135
5 7 831
3 5 12
3 10 789
1 8 66
4 9 390
1 7 238
6 7 960
1 4 624
3 9 602
7 10 366
5 8 526
2 9 561
6 10 722
2 5 904
3 4 35
1 9 768
5 9 457
6 8 61
4 6 192
4 5 96
5 10 747
8 9 611
7 8 953
3 8 449
2 4 228
1 6 197
9 10 160
3 6 869
1 2 785
4 8 ...

output:

526

result:

ok answer is '526'

Test #4:

score: 0
Accepted
time: 2ms
memory: 3596kb

input:

277 9038 1
226 260 740
44 226 376
151 263 611
67 269 241
120 181 677
259 271 782
37 52 310
48 152 452
168 266 823
85 234 100
46 201 738
129 153 301
69 147 434
13 72 764
13 234 316
171 222 398
214 255 21
112 158 430
20 118 407
45 152 971
205 214 272
221 275 362
198 268 472
117 176 207
31 75 652
139 1...

output:

5375

result:

ok answer is '5375'

Test #5:

score: 0
Accepted
time: 14ms
memory: 3944kb

input:

297 27966 132
15 197 980
226 259 950
161 168 142
118 176 834
157 221 806
24 210 432
212 242 838
110 166 177
78 170 801
52 166 3
89 213 448
45 170 626
250 251 268
93 222 679
7 128 839
5 7 320
132 191 1
192 295 717
36 231 542
162 175 508
173 178 458
211 272 926
46 168 145
19 150 805
165 262 198
50 179...

output:

775

result:

ok answer is '775'

Test #6:

score: 0
Accepted
time: 0ms
memory: 3436kb

input:

7 7 4
1 3 7
1 4 6
2 3 5
2 4 6
4 5 10
4 6 10
4 7 10
5 4 3 2 7 5
6 5 2 6 7 4 1
2 2 3
6 7 2 5 3 1 6

output:

17

result:

ok answer is '17'

Test #7:

score: 0
Accepted
time: 80ms
memory: 8072kb

input:

300 44850 299
1 2 1
1 3 1
1 4 1
1 5 1
1 6 1
1 7 1
1 8 1
1 9 1
1 10 1
1 11 1
1 12 1
1 13 1
1 14 1
1 15 1
1 16 1
1 17 1
1 18 1
1 19 1
1 20 1
1 21 1
1 22 1
1 23 1
1 24 1
1 25 1
1 26 1
1 27 1
1 28 1
1 29 1
1 30 1
1 31 1
1 32 1
1 33 1
1 34 1
1 35 1
1 36 1
1 37 1
1 38 1
1 39 1
1 40 1
1 41 1
1 42 1
1 43 1
...

output:

1000

result:

ok answer is '1000'

Test #8:

score: 0
Accepted
time: 152ms
memory: 12604kb

input:

300 44850 299
1 2 1
1 3 1
1 4 1
1 5 1
1 6 1
1 7 1
1 8 1
1 9 1
1 10 1
1 11 1
1 12 1
1 13 1
1 14 1
1 15 1
1 16 1
1 17 1
1 18 1
1 19 1
1 20 1
1 21 1
1 22 1
1 23 1
1 24 1
1 25 1
1 26 1
1 27 1
1 28 1
1 29 1
1 30 1
1 31 1
1 32 1
1 33 1
1 34 1
1 35 1
1 36 1
1 37 1
1 38 1
1 39 1
1 40 1
1 41 1
1 42 1
1 43 1
...

output:

1000

result:

ok answer is '1000'

Test #9:

score: 0
Accepted
time: 38ms
memory: 6532kb

input:

300 44850 150
1 2 4
1 3 4
1 4 4
1 5 3
1 6 10
1 7 4
1 8 8
1 9 5
1 10 4
1 11 9
1 12 9
1 13 1
1 14 3
1 15 5
1 16 7
1 17 5
1 18 2
1 19 6
1 20 4
1 21 10
1 22 5
1 23 7
1 24 2
1 25 2
1 26 4
1 27 4
1 28 5
1 29 8
1 30 10
1 31 9
1 32 1
1 33 7
1 34 5
1 35 4
1 36 6
1 37 8
1 38 1
1 39 2
1 40 1
1 41 1
1 42 1
1 43...

output:

249

result:

ok answer is '249'

Test #10:

score: 0
Accepted
time: 30ms
memory: 6532kb

input:

300 44850 150
1 2 70
1 3 26
1 4 76
1 5 74
1 6 98
1 7 72
1 8 66
1 9 25
1 10 36
1 11 57
1 12 8
1 13 88
1 14 98
1 15 33
1 16 85
1 17 56
1 18 16
1 19 62
1 20 41
1 21 81
1 22 18
1 23 15
1 24 69
1 25 11
1 26 29
1 27 62
1 28 64
1 29 41
1 30 92
1 31 29
1 32 99
1 33 40
1 34 30
1 35 23
1 36 49
1 37 6
1 38 84
...

output:

1299

result:

ok answer is '1299'

Test #11:

score: 0
Accepted
time: 44ms
memory: 7324kb

input:

300 44850 150
1 2 3
1 3 2
1 4 20
1 5 77
1 6 77
1 7 23
1 8 39
1 9 57
1 10 83
1 11 60
1 12 6
1 13 78
1 14 64
1 15 62
1 16 41
1 17 88
1 18 77
1 19 58
1 20 39
1 21 18
1 22 43
1 23 26
1 24 40
1 25 61
1 26 23
1 27 6
1 28 47
1 29 100
1 30 59
1 31 92
1 32 60
1 33 13
1 34 57
1 35 55
1 36 99
1 37 77
1 38 63
1...

output:

1310

result:

ok answer is '1310'

Test #12:

score: -100
Wrong Answer
time: 28ms
memory: 4204kb

input:

300 44551 299
1 2 1
1 3 1
1 4 1
1 5 1
1 6 1
1 7 1
1 8 1
1 9 1
1 10 1
1 11 1
1 12 1
1 13 1
1 14 1
1 15 1
1 16 1
1 17 1
1 18 1
1 19 1
1 20 1
1 21 1
1 22 1
1 23 1
1 24 1
1 25 1
1 26 1
1 27 1
1 28 1
1 29 1
1 30 1
1 31 1
1 32 1
1 33 1
1 34 1
1 35 1
1 36 1
1 37 1
1 38 1
1 39 1
1 40 1
1 41 1
1 42 1
1 43 1
...

output:

0

result:

wrong answer expected '-1', found '0'