QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#110344#6513. Expression 3ffaoCompile Error//C++1783.7kb2023-06-01 16:44:062023-06-01 17:00:46

Judging History

你现在查看的是最新测评结果

  • [2024-02-14 13:23:19]
  • hack成功,自动添加数据
  • (/hack/531)
  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-06-01 17:00:46]
  • 评测
  • [2023-06-01 16:44:06]
  • 提交

answer

#ifdef LOCAL
#define _GLIBCXX_DEBUG 1
#define dbg(...) cerr << "LINE(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
#else
#define dbg(...) 0
#endif

#if 0
    #include <ext/pb_ds/assoc_container.hpp>
    #include <ext/pb_ds/tree_policy.hpp>
 
    template<class T>
    using ordered_set = __gnu_pbds::tree<T, __gnu_pbds::null_type, std::less<T>, __gnu_pbds::rb_tree_tag,
        __gnu_pbds::tree_order_statistics_node_update>;
#endif

#include <vector> 
#include <list> 
#include <map> 
#include <set> 
#include <queue>
#include <stack> 
#include <bitset> 
#include <algorithm> 
#include <numeric> 
#include <utility> 
#include <sstream> 
#include <iostream> 
#include <iomanip> 
#include <cstdio> 
#include <cmath> 
#include <cstdlib> 
#include <ctime> 
#include <cstring>
#include <random>
#include <chrono>
#include <cassert>

using namespace std;
 
#define sz(x) (int)(x).size()
#define all(x) begin(x), end(x)
#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define REP(i,n) for(int (i)=0;(i)<(int)(n);(i)++)

#define each(a,x) for (auto& a: x)
#define tcT template<class T
#define tcTU tcT, class U
#define tcTUU tcT, class ...U
template<class T> using V = vector<T>; 
template<class T, size_t SZ> using AR = array<T,SZ>;

typedef string str;
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef vector<vi> vvi;
 
template<typename T, typename U> T &ctmax(T &x, const U &y){ return x = max<T>(x, y); }
template<typename T, typename U> T &ctmin(T &x, const U &y){ return x = min<T>(x, y); }
 
mt19937 rng((unsigned)chrono::steady_clock::now().time_since_epoch().count());
 
#define ts to_string
str ts(char c) { return str(1,c); }
str ts(bool b) { return b ? "true" : "false"; }
str ts(const char* s) { return (str)s; }
str ts(str s) { return s; }
str ts(vector<bool> v) { str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]);	res += "}"; return res; }
template<size_t SZ> str ts(bitset<SZ> b) { str res = ""; F0R(i,SZ) res += char('0'+b[i]); return res; }
template<class A, class B> str ts(pair<A,B> p);
template<class T> str ts(T v) { bool fst = 1; str res = "{"; for (const auto& x: v) {if (!fst) res += ", ";	fst = 0; res += ts(x);}	res += "}"; return res;}
template<class A, class B> str ts(pair<A,B> p) {return "("+ts(p.first)+", "+ts(p.second)+")"; }
 
template<class A> void pr(A x) { cout << ts(x); }
template<class H, class... T> void pr(const H& h, const T&... t) { pr(h); pr(t...); }
void ps() { pr("\n"); }
template<class H, class... T> void ps(const H& h, const T&... t) { pr(h); if (sizeof...(t)) pr(" "); ps(t...); }
 
void DBG() { cerr << "]" << endl; }
template<class H, class... T> void DBG(H h, T... t) {cerr << ts(h); if (sizeof...(t)) cerr << ", ";	DBG(t...); }

tcTU> void re(pair<T,U>& p);
tcT> void re(V<T>& v);
tcT, size_t SZ> void re(AR<T,SZ>& a);

tcT> void re(T& x) { cin >> x; }
void re(double& d) { str t; re(t); d = stod(t); }
void re(long double& d) { str t; re(t); d = stold(t); }
tcTUU> void re(T& t, U&... u) { re(t); re(u...); }

tcTU> void re(pair<T,U>& p) { re(p.first,p.second); }
tcT> void re(V<T>& x) { each(a,x) re(a); }
tcT, size_t SZ> void re(AR<T,SZ>& x) { each(a,x) re(a); }
tcT> void rv(int n, V<T>& x) { x.rsz(n); re(x); }

constexpr bool multitest() {return 0;}
void solve();
int main() {
	ios_base::sync_with_stdio(false); cin.tie(NULL);
	int t = 1;
	if (multitest()) cin >> t;
	for (; t; t--) solve();
}




#define rng(i,a,b) for(int i=int(a);i<int(b);i++)
#define rep(i,b) rng(i,0,b)
#define gnr(i,a,b) for(int i=int(b)-1;i>=int(a);i--)
tcT> using vc = vector<T>;
tcT> using vvc=vc<vc<T>>;
using uint=unsigned;
using ull=unsigned long long;
#define si(x) int(x.size())
#define per(i,b) gnr(i,0,b)
#define pb push_back
#define eb emplace_back
#define a first
#define b second
#define bg begin()
#define ed end()



struct modinfo{uint mod,root;};
template<modinfo const&ref>
struct modular{
	static constexpr uint const &mod=ref.mod;
	static modular root(){return modular(ref.root);}
	uint v;
	//modular(initializer_list<uint>ls):v(*ls.bg){}
	modular(ll vv=0){s(vv%mod+mod);}
	modular& s(uint vv){
		v=vv<mod?vv:vv-mod;
		return *this;
	}
	modular operator-()const{return modular()-*this;}
	modular& operator+=(const modular&rhs){return s(v+rhs.v);}
	modular&operator-=(const modular&rhs){return s(v+mod-rhs.v);}
	modular&operator*=(const modular&rhs){
		v=ull(v)*rhs.v%mod;
		return *this;
	}
	modular&operator/=(const modular&rhs){return *this*=rhs.inv();}
	modular operator+(const modular&rhs)const{return modular(*this)+=rhs;}
	modular operator-(const modular&rhs)const{return modular(*this)-=rhs;}
	modular operator*(const modular&rhs)const{return modular(*this)*=rhs;}
	modular operator/(const modular&rhs)const{return modular(*this)/=rhs;}
	modular pow(int n)const{
		modular res(1),x(*this);
		while(n){
			if(n&1)res*=x;
			x*=x;
			n>>=1;
		}
		return res;
	}
	modular inv()const{return pow(mod-2);}
	/*modular inv()const{
		int x,y;
		int g=extgcd(v,mod,x,y);
		assert(g==1);
		if(x<0)x+=mod;
		return modular(x);
	}*/
	friend modular operator+(int x,const modular&y){
		return modular(x)+y;
	}
	friend modular operator-(int x,const modular&y){
		return modular(x)-y;
	}
	friend modular operator*(int x,const modular&y){
		return modular(x)*y;
	}
	friend modular operator/(int x,const modular&y){
		return modular(x)/y;
	}
	friend ostream& operator<<(ostream&os,const modular&m){
		return os<<m.v;
	}
	friend istream& operator>>(istream&is,modular&m){
		ll x;is>>x;
		m=modular(x);
		return is;
	}
	bool operator<(const modular&r)const{return v<r.v;}
	bool operator==(const modular&r)const{return v==r.v;}
	bool operator!=(const modular&r)const{return v!=r.v;}
	explicit operator bool()const{
		return v;
	}
};

#define USE_FMT

/*
//998244353
const mint prim_root=3;
//in-place fft
//size of input must be a power of 2
void inplace_fmt(vector<mint>&f,const bool inv){
	const int n=f.size();
	const mint root=inv?prim_root.inv():prim_root;
	vc<mint> g(n);
	for(int b=n/2;b>=1;b/=2){
		mint w=root.pow((mint::base-1)/(n/b)),p=1;
		for(int i=0;i<n;i+=b*2){
			rep(j,b){
				f[i+j+b]*=p;
				g[i/2+j]=f[i+j]+f[i+b+j];
				g[n/2+i/2+j]=f[i+j]-f[i+b+j];
			}
			p*=w;
		}
		swap(f,g);
	}
	if(inv)rep(i,n)
		f[i]*=inv[n];
}*/

//size of input must be a power of 2
//output of forward fmt is bit-reversed
//output elements are in the range [0,mod*4)
//input of inverse fmt should be bit-reversed
template<class mint>
void inplace_fmt(const int n,mint*const f,bool inv){
	static constexpr uint mod=mint::mod;
	static constexpr uint mod2=mod*2;
	static const int L=30;
	static mint g[L],ig[L],p2[L];
	if(g[0].v==0){
		rep(i,L){
			mint w=-mint::root().pow(((mod-1)>>(i+2))*3);
			g[i]=w;
			ig[i]=w.inv();
			p2[i]=mint(1<<i).inv();
		}
	}
	if(!inv){
		int b=n;
		if(b>>=1){//input:[0,mod)
			rep(i,b){
				uint x=f[i+b].v;
				f[i+b].v=f[i].v+mod-x;
				f[i].v+=x;
			}
		}
		if(b>>=1){//input:[0,mod*2)
			mint p=1;
			for(int i=0,k=0;i<n;i+=b*2){
				rng(j,i,i+b){
					uint x=(f[j+b]*p).v;
					f[j+b].v=f[j].v+mod-x;
					f[j].v+=x;
				}
				p*=g[__builtin_ctz(++k)];
			}
		}
		while(b){
			if(b>>=1){//input:[0,mod*3)
				mint p=1;
				for(int i=0,k=0;i<n;i+=b*2){
					rng(j,i,i+b){
						uint x=(f[j+b]*p).v;
						f[j+b].v=f[j].v+mod-x;
						f[j].v+=x;
					}
					p*=g[__builtin_ctz(++k)];
				}
			}
			if(b>>=1){//input:[0,mod*4)
				mint p=1;
				for(int i=0,k=0;i<n;i+=b*2){
					rng(j,i,i+b){
						uint x=(f[j+b]*p).v;
						f[j].v=(f[j].v<mod2?f[j].v:f[j].v-mod2);
						f[j+b].v=f[j].v+mod-x;
						f[j].v+=x;
					}
					p*=g[__builtin_ctz(++k)];
				}
			}
		}
	}else{
		int b=1;
		if(b<n/2){//input:[0,mod)
			mint p=1;
			for(int i=0,k=0;i<n;i+=b*2){
				rng(j,i,i+b){
					ull x=f[j].v+mod-f[j+b].v;
					f[j].v+=f[j+b].v;
					f[j+b].v=x*p.v%mod;
				}
				p*=ig[__builtin_ctz(++k)];
			}
			b<<=1;
		}
		for(;b<n/2;b<<=1){
			mint p=1;
			for(int i=0,k=0;i<n;i+=b*2){
				rng(j,i,i+b/2){//input:[0,mod*2)
					ull x=f[j].v+mod2-f[j+b].v;
					f[j].v+=f[j+b].v;
					f[j].v=(f[j].v)<mod2?f[j].v:f[j].v-mod2;
					f[j+b].v=x*p.v%mod;
				}
				rng(j,i+b/2,i+b){//input:[0,mod)
					ull x=f[j].v+mod-f[j+b].v;
					f[j].v+=f[j+b].v;
					f[j+b].v=x*p.v%mod;
				}
				p*=ig[__builtin_ctz(++k)];
			}
		}
		if(b<n){//input:[0,mod*2)
			rep(i,b){
				uint x=f[i+b].v;
				f[i+b].v=f[i].v+mod2-x;
				f[i].v+=x;
			}
		}
		mint z=p2[__lg(n)];
		rep(i,n)f[i]*=z;
	}
}

template<class mint>
void inplace_fmt(vector<mint>&f,bool inv){
	inplace_fmt(si(f),f.data(),inv);
}

template<class mint>
void half_fmt(const int n,mint*const f){
	static constexpr uint mod=mint::mod;
	static constexpr uint mod2=mod*2;
	static const int L=30;
	static mint g[L],h[L];
	if(g[0].v==0){
		rep(i,L){
			g[i]=-mint::root().pow(((mod-1)>>(i+2))*3);
			h[i]=mint::root().pow((mod-1)>>(i+2));
		}
	}
	int b=n;
	int lv=0;
	if(b>>=1){//input:[0,mod)
		mint p=h[lv++];
		for(int i=0,k=0;i<n;i+=b*2){
			rng(j,i,i+b){
				uint x=(f[j+b]*p).v;
				f[j+b].v=f[j].v+mod-x;
				f[j].v+=x;
			}
			p*=g[__builtin_ctz(++k)];
		}
	}
	if(b>>=1){//input:[0,mod*2)
		mint p=h[lv++];
		for(int i=0,k=0;i<n;i+=b*2){
			rng(j,i,i+b){
				uint x=(f[j+b]*p).v;
				f[j+b].v=f[j].v+mod-x;
				f[j].v+=x;
			}
			p*=g[__builtin_ctz(++k)];
		}
	}
	while(b){
		if(b>>=1){//input:[0,mod*3)
			mint p=h[lv++];
			for(int i=0,k=0;i<n;i+=b*2){
				rng(j,i,i+b){
					uint x=(f[j+b]*p).v;
					f[j+b].v=f[j].v+mod-x;
					f[j].v+=x;
				}
				p*=g[__builtin_ctz(++k)];
			}
		}
		if(b>>=1){//input:[0,mod*4)
			mint p=h[lv++];
			for(int i=0,k=0;i<n;i+=b*2){
				rng(j,i,i+b){
					uint x=(f[j+b]*p).v;
					f[j].v=(f[j].v<mod2?f[j].v:f[j].v-mod2);
					f[j+b].v=f[j].v+mod-x;
					f[j].v+=x;
				}
				p*=g[__builtin_ctz(++k)];
			}
		}
	}
}

template<class mint>
void half_fmt(vector<mint>&f){
	half_fmt(si(f),f.data());
}

/*template<class mint>
vc<mint> multiply(vc<mint> x,const vc<mint>&y,bool same=false){
	int n=si(x)+si(y)-1;
	int s=1;
	while(s<n)s*=2;
	x.resize(s);inplace_fmt(x,false);
	if(!same){
		vc<mint> z(s);
		rep(i,si(y))z[i]=y[i];
		inplace_fmt(z,false);
		rep(i,s)x[i]*=z[i];
	}else{
		rep(i,s)x[i]*=x[i];
	}
	inplace_fmt(x,true);x.resize(n);
	return x;
}*/

//59501818244292734739283969-1=5.95*10^25 までの値を正しく計算
//最終的な列の大きさが 2^24 までなら動く
//最終的な列の大きさが 2^20 以下のときは,下の 3 つの素数を使ったほうが速い(は?)
//VERIFY: yosupo
namespace arbitrary_convolution{
	//constexpr modinfo base0{167772161,3};//2^25 * 5 + 1
	//constexpr modinfo base1{469762049,3};//2^26 * 7 + 1
	//constexpr modinfo base2{754974721,11};//2^24 * 45 + 1
	constexpr modinfo base0{1045430273,3};//2^20 * 997 + 1
	constexpr modinfo base1{1051721729,6};//2^20 * 1003 + 1
	constexpr modinfo base2{1053818881,7};//2^20 * 1005 + 1
	using mint0=modular<base0>;
	using mint1=modular<base1>;
	using mint2=modular<base2>;
	template<class t,class mint>
	vc<t> sub(const vc<mint>&x,const vc<mint>&y,bool same=false){
		int n=si(x)+si(y)-1;
		int s=1;
		while(s<n)s*=2;
		vc<t> z(s);rep(i,si(x))z[i]=x[i].v;
		inplace_fmt(z,false);
		if(!same){
			vc<t> w(s);rep(i,si(y))w[i]=y[i].v;
			inplace_fmt(w,false);
			rep(i,s)z[i]*=w[i];
		}else{
			rep(i,s)z[i]*=z[i];
		}
		inplace_fmt(z,true);z.resize(n);
		return z;
	}
	template<class mint>
	vc<mint> multiply(const vc<mint>&x,const vc<mint>&y,bool same=false){
		auto d0=sub<mint0>(x,y,same);
		auto d1=sub<mint1>(x,y,same);
		auto d2=sub<mint2>(x,y,same);
		int n=si(d0);
		vc<mint> res(n);
		static const mint1 r01=mint1(mint0::mod).inv();
		static const mint2 r02=mint2(mint0::mod).inv();
		static const mint2 r12=mint2(mint1::mod).inv();
		static const mint2 r02r12=r02*r12;
		static const mint w1=mint(mint0::mod);
		static const mint w2=w1*mint(mint1::mod);
		rep(i,n){
			ull a=d0[i].v;
			ull b=(d1[i].v+mint1::mod-a)*r01.v%mint1::mod;
			ull c=((d2[i].v+mint2::mod-a)*r02r12.v+(mint2::mod-b)*r12.v)%mint2::mod;
			res[i].v=(a+b*w1.v+c*w2.v)%mint::mod;
		}
		return res;
	}
}
using arbitrary_convolution::multiply;

template<class mint>
struct Poly:public vc<mint>{
	template<class...Args>
	Poly(Args...args):vc<mint>(args...){}
	Poly(initializer_list<mint>init):vc<mint>(all(init)){}
	int size()const{
		return vc<mint>::size();
	}
	void ups(int s){
		if(size()<s)this->resize(s,0);
	}
	Poly low(int s)const{
		return Poly(this->bg,this->bg+min(max(s,int(1)),size()));
	}
	Poly rev()const{
		auto r=*this;
		reverse(all(r));
		return r;
	}
	mint freq(int i)const{
		return i<size()?(*this)[i]:0;
	}
	Poly operator-()const{
		Poly res=*this;
		for(auto&v:res)v=-v;
		return res;
	}
	Poly& operator+=(const Poly&r){
		ups(r.size());
		rep(i,r.size())
			(*this)[i]+=r[i];
		return *this;
	}
	template<class T>
	Poly& operator+=(T t){
		(*this)[0]+=t;
		return *this;
	}
	Poly& operator-=(const Poly&r){
		ups(r.size());
		rep(i,r.size())
			(*this)[i]-=r[i];
		return *this;
	}
	template<class T>
	Poly& operator-=(T t){
		(*this)[0]-=t;
		return *this;
	}
	template<class T>
	Poly& operator*=(T t){
		for(auto&v:*this)
			v*=t;
		return *this;
	}
	Poly& operator*=(const Poly&r){
		return *this=multiply(*this,r);
	}
	Poly square()const{
		return multiply(*this,*this,true);
	}
	#ifndef USE_FMT
	Poly inv(int s)const{
		Poly r{mint(1)/(*this)[0]};
		for(int n=1;n<s;n*=2)
			r=r*2-(r.square()*low(2*n)).low(2*n);
		return r.low(s);
	}
	#else
	//source: Section 4 of "Removing redundancy from high-precision Newton iteration"
	// 5/3
	Poly inv(int s)const{
		Poly r(s);
		r[0]=mint(1)/(*this)[0];
		for(int n=1;n<s;n*=2){
			vc<mint> f=low(2*n);
			f.resize(2*n);
			inplace_fmt(f,false);
			vc<mint> g=r.low(2*n);
			g.resize(2*n);
			inplace_fmt(g,false);
			rep(i,2*n)f[i]*=g[i];
			inplace_fmt(f,true);
			rep(i,n)f[i]=0;
			inplace_fmt(f,false);
			rep(i,2*n)f[i]*=g[i];
			inplace_fmt(f,true);
			rng(i,n,min(2*n,s))r[i]=-f[i];
		}
		return r;
	}
	#endif
	template<class T>
	Poly& operator/=(T t){
		return *this*=mint(1)/mint(t);
	}
	Poly quotient(const Poly&r,const Poly&rri)const{
		int m=r.size();
		assert(r[m-1].v);
		int n=size();
		int s=n-m+1;
		if(s<=0) return {0};
		return (rev().low(s)*rri.low(s)).low(s).rev();
	}
	Poly& operator/=(const Poly&r){
		return *this=quotient(r,r.rev().inv(max(size()-r.size(),int(0))+1));
	}
	Poly& operator%=(const Poly&r){
		*this-=*this/r*r;
		return *this=low(r.size()-1);
	}
	Poly operator+(const Poly&r)const{return Poly(*this)+=r;}
	template<class T>
	Poly operator+(T t)const{return Poly(*this)+=t;}
	Poly operator-(const Poly&r)const{return Poly(*this)-=r;}
	template<class T>
	Poly operator-(T t)const{return Poly(*this)-=t;}
	template<class T>
	Poly operator*(T t)const{return Poly(*this)*=t;}
	Poly operator*(const Poly&r)const{return Poly(*this)*=r;}
	template<class T>
	Poly operator/(T t)const{return Poly(*this)/=t;}
	Poly operator/(const Poly&r)const{return Poly(*this)/=r;}
	Poly operator%(const Poly&r)const{return Poly(*this)%=r;}
	Poly dif()const{
		Poly r(max(int(0),size()-1));
		rep(i,r.size())
			r[i]=(*this)[i+1]*(i+1);
		return r;
	}
	Poly inte(const mint invs[])const{
		Poly r(size()+1,0);
		rep(i,size())
			r[i+1]=(*this)[i]*invs[i+1];
		return r;
	}
	//VERIFY: yosupo
	//opencupXvcIII GP of Peterhof H
	Poly log(int s,const mint invs[])const{
		return (low(s).dif()*inv(s-1)).low(s-1).inte(invs);
	}
	//Petrozavodsk 2019w mintay1 G
	//yosupo judge
	Poly exp(int s)const{
		return exp2(s).a;
	}
	//2つほしいときはコメントアウトの位置ずらす
	pair<Poly,Poly> exp2(int s,const mint invs[])const{
		assert((*this)[0]==mint(0));
		Poly f{1},g{1};
		for(int n=1;;n*=2){
			if(n>=s)break;
			g=g*2-(g.square()*f).low(n);
			//if(n>=s)break;
			Poly q=low(n).dif();
			q=q+g*(f.dif()-f*q).low(2*n-1);
			f=f+(f*(low(2*n)-q.inte(invs))).low(2*n);
		}
		return make_pair(f.low(s),g.low(s));
	}
	//11/6
	//VERIFY: yosupo
	Poly sqrt(int s)const{
		assert((*this)[0]==1);
		static const mint half=mint(1)/mint(2);
		vc<mint> f{1},g{1},z{1};
		for(int n=1;n<s;n*=2){
			rep(i,n)z[i]*=z[i];
			inplace_fmt(z,true);
			
			vc<mint> delta(2*n);
			rep(i,n)delta[n+i]=z[i]-freq(i)-freq(n+i);
			inplace_fmt(delta,false);
			
			vc<mint> gbuf(2*n);
			rep(i,n)gbuf[i]=g[i];
			inplace_fmt(gbuf,false);
			
			rep(i,2*n)delta[i]*=gbuf[i];
			inplace_fmt(delta,true);
			f.resize(2*n);
			rng(i,n,2*n)f[i]=-half*delta[i];
			
			if(2*n>=s)break;
			
			z=f;
			inplace_fmt(z,false);
			
			vc<mint> eps=gbuf;
			rep(i,2*n)eps[i]*=z[i];
			inplace_fmt(eps,true);
			
			rep(i,n)eps[i]=0;
			inplace_fmt(eps,false);
			
			rep(i,2*n)eps[i]*=gbuf[i];
			inplace_fmt(eps,true);
			g.resize(2*n);
			rng(i,n,2*n)g[i]=-eps[i];
		}
		f.resize(s);
		return f;
	}
	pair<Poly,Poly> divide(const Poly&r,const Poly&rri)const{
		Poly a=quotient(r,rri);
		Poly b=*this-a*r;
		return make_pair(a,b.low(r.size()-1));
	}
	//Yukicoder No.215
	Poly pow_mod(int n,const Poly&r)const{
		Poly rri=r.rev().inv(r.size());
		Poly cur{1},x=*this%r;
		while(n){
			if(n%2)
				cur=(cur*x).divide(r,rri).b;
			x=(x*x).divide(r,rri).b;
			n/=2;
		}
		return cur;
	}
	mint eval(mint x)const{
		mint r=0,w=1;
		for(auto v:*this){
			r+=w*v;
			w*=x;
		}
		return r;
	}
};

//source: Tellegen’s Principle into Practice

template<class mint>
struct subproduct_tree{
	using poly=Poly<mint>;
	int raws,s;
	vvc<mint> f;
	poly top;
	vc<mint> inner_product(const vc<mint>&a,const vc<mint>&b){
		assert(si(a)==si(b));
		vc<mint> c=a;
		rep(i,si(a))c[i]*=b[i];
		return c;
	}
	void doubling_fmt(vc<mint>&dst,vc<mint> a,const mint v){
		int n=si(dst);
		assert(si(a)==n);
		a[0]-=v*2;
		half_fmt(a);
		dst.resize(2*n);
		rep(i,n)dst[n+i]=a[i];
	}
	subproduct_tree(const vc<mint>&a){
		raws=si(a);
		s=1;while(s<si(a))s*=2;
		f.resize(s*2);
		rep(i,s){
			mint w=i<si(a)?a[i]:0;
			f[s+i]={-w+1,-w-1};
		}
		top={-a[0],1};
		gnr(i,1,s){
			f[i]=inner_product(f[i*2],f[i*2+1]);
			top.resize(si(f[i]));
			copy(all(f[i]),top.bg);
			inplace_fmt(top,true);
			if(i==1){
				top.pb(1);
				top[0]-=1;
			}else{
				doubling_fmt(f[i],top,1);
			}
		}
	}
	vc<mint> multieval(const poly&b){
		vvc<mint> c(s*2);
		c[1]=top.rev().inv(si(b)).rev()*b;
		c[1].erase(c[1].bg,c[1].bg+si(b)-1);
		c[1].resize(s);
		vc<mint> tmp;
		rng(i,1,s){
			int len=si(c[i]);
			inplace_fmt(c[i],false);
			rep(k,2){
				tmp.resize(len);
				copy(all(f[i*2+(k^1)]),tmp.bg);
				rep(j,len)tmp[j]*=c[i][j];
				inplace_fmt(tmp,true);
				c[i*2+k]=vc<mint>(tmp.bg+len/2,tmp.ed);
			}
		}
		vc<mint> ans(raws);
		rep(i,raws)ans[i]=c[s+i][0];
		return ans;
	}
};

template<class mint>
vc<mint> multieval(const Poly<mint>&f,const vc<mint>&x){
	return subproduct_tree<mint>(x).multieval(f);
}

constexpr modinfo base{998244353,3};
constexpr modinfo base1{998244352,0};
using mint=modular<base>;
using mint1=modular<base1>;






#include <limits>
#include <type_traits>

#undef rng
namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned long long y = x * _m;
        return (unsigned int)(z - y + (z < y ? _m : 0));
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder



namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

long long pow_mod(long long x, long long n, int m) {
    assert(0 <= n && 1 <= m);
    if (m == 1) return 0;
    internal::barrett bt((unsigned int)(m));
    unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));
    while (n) {
        if (n & 1) r = bt.mul(r, y);
        y = bt.mul(y, y);
        n >>= 1;
    }
    return r;
}

long long inv_mod(long long x, long long m) {
    assert(1 <= m);
    auto z = internal::inv_gcd(x, m);
    assert(z.first == 1);
    return z.second;
}

// (rem, mod)
std::pair<long long, long long> crt(const std::vector<long long>& r,
                                    const std::vector<long long>& m) {
    assert(r.size() == m.size());
    int n = int(r.size());
    // Contracts: 0 <= r0 < m0
    long long r0 = 0, m0 = 1;
    for (int i = 0; i < n; i++) {
        assert(1 <= m[i]);
        long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];
        if (m0 < m1) {
            std::swap(r0, r1);
            std::swap(m0, m1);
        }
        if (m0 % m1 == 0) {
            if (r0 % m1 != r1) return {0, 0};
            continue;
        }
        // assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1)

        // (r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1));
        // r2 % m0 = r0
        // r2 % m1 = r1
        // -> (r0 + x*m0) % m1 = r1
        // -> x*u0*g = r1-r0 (mod u1*g) (u0*g = m0, u1*g = m1)
        // -> x = (r1 - r0) / g * inv(u0) (mod u1)

        // im = inv(u0) (mod u1) (0 <= im < u1)
        long long g, im;
        std::tie(g, im) = internal::inv_gcd(m0, m1);

        long long u1 = (m1 / g);
        // |r1 - r0| < (m0 + m1) <= lcm(m0, m1)
        if ((r1 - r0) % g) return {0, 0};

        // u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1)
        long long x = (r1 - r0) / g % u1 * im % u1;

        // |r0| + |m0 * x|
        // < m0 + m0 * (u1 - 1)
        // = m0 + m0 * m1 / g - m0
        // = lcm(m0, m1)
        r0 += x * m0;
        m0 *= u1;  // -> lcm(m0, m1)
        if (r0 < 0) r0 += m0;
    }
    return {r0, m0};
}

long long floor_sum(long long n, long long m, long long a, long long b) {
    assert(0 <= n && n < (1LL << 32));
    assert(1 <= m && m < (1LL << 32));
    unsigned long long ans = 0;
    if (a < 0) {
        unsigned long long a2 = internal::safe_mod(a, m);
        ans -= 1ULL * n * (n - 1) / 2 * ((a2 - a) / m);
        a = a2;
    }
    if (b < 0) {
        unsigned long long b2 = internal::safe_mod(b, m);
        ans -= 1ULL * n * ((b2 - b) / m);
        b = b2;
    }
    return ans + internal::floor_sum_unsigned(n, m, a, b);
}

}  // namespace atcoder

namespace suisen {
// ! utility
template <typename ...Types>
using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>;
template <bool cond_v, typename Then, typename OrElse>
constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) {
    if constexpr (cond_v) {
        return std::forward<Then>(then);
    } else {
        return std::forward<OrElse>(or_else);
    }
}

// ! function
template <typename ReturnType, typename Callable, typename ...Args>
using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>;
template <typename F, typename T>
using is_uni_op = is_same_as_invoke_result<T, F, T>;
template <typename F, typename T>
using is_bin_op = is_same_as_invoke_result<T, F, T, T>;

template <typename Comparator, typename T>
using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>;

// ! integral
template <typename T, typename = constraints_t<std::is_integral<T>>>
constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits;
template <typename T, unsigned int n>
struct is_nbit { static constexpr bool value = bit_num<T> == n; };
template <typename T, unsigned int n>
static constexpr bool is_nbit_v = is_nbit<T, n>::value;

// ?
template <typename T>
struct safely_multipliable {};
template <>
struct safely_multipliable<int> { using type = long long; };
template <>
struct safely_multipliable<long long> { using type = __int128_t; };
template <>
struct safely_multipliable<unsigned int> { using type = unsigned long long; };
template <>
struct safely_multipliable<unsigned long int> { using type = __uint128_t; };
template <>
struct safely_multipliable<unsigned long long> { using type = __uint128_t; };
template <>
struct safely_multipliable<float> { using type = float; };
template <>
struct safely_multipliable<double> { using type = double; };
template <>
struct safely_multipliable<long double> { using type = long double; };
template <typename T>
using safely_multipliable_t = typename safely_multipliable<T>::type;

template <typename T, typename = void>
struct rec_value_type {
    using type = T;
};
template <typename T>
struct rec_value_type<T, std::void_t<typename T::value_type>> {
    using type = typename rec_value_type<typename T::value_type>::type;
};
template <typename T>
using rec_value_type_t = typename rec_value_type<T>::type;

} // namespace suisen

#include <cstdint>
#include <iterator>
#include <tuple>

namespace suisen {
    namespace internal::montgomery {
        template <typename Int, typename DInt>
        struct Montgomery {
        private:
            static constexpr uint32_t bits = std::numeric_limits<Int>::digits;
            static constexpr Int mask = ~Int(0);
            // R = 2**32 or 2**64

            // 1. N is an odd number
            // 2. N < R
            // 3. gcd(N, R) = 1
            // 4. R * R2 - N * N2 = 1
            // 5. 0 < R2 < N
            // 6. 0 < N2 < R
            Int N, N2, R2;

            // RR = R * R (mod N)
            Int RR;
        public:
            constexpr Montgomery() = default;
            explicit constexpr Montgomery(Int N) : N(N), N2(calcN2(N)), R2(calcR2(N, N2)), RR(calcRR(N)) {
                assert(N & 1);
            }

            // @returns t * R (mod N)
            constexpr Int make(Int t) const {
                return reduce(static_cast<DInt>(t) * RR);
            }
            // @returns T * R^(-1) (mod N)
            constexpr Int reduce(DInt T) const {
                // 0 <= T < RN

                // Note:
                //  1. m = T * N2 (mod R)
                //  2. 0 <= m < R
                DInt m = modR(static_cast<DInt>(modR(T)) * N2);

                // Note:
                //  T + m * N = T + T * N * N2 = T + T * (R * R2 - 1) = 0 (mod R)
                //  => (T + m * N) / R is an integer.
                //  => t * R = T + m * N = T (mod N)
                //  => t = T R^(-1) (mod N)
                DInt t = divR(T + m * N);

                // Note:
                //  1. 0 <= T < RN
                //  2. 0 <= mN < RN (because 0 <= m < R)
                //  => 0 <= T + mN < 2RN
                //  => 0 <= t < 2N
                return t >= N ? t - N : t;
            }

            constexpr Int add(Int A, Int B) const {
                return (A += B) >= N ? A - N : A;
            }
            constexpr Int sub(Int A, Int B) const {
                return (A -= B) < 0 ? A + N : A;
            }
            constexpr Int mul(Int A, Int B) const {
                return reduce(static_cast<DInt>(A) * B);
            }
            constexpr Int div(Int A, Int B) const {
                return reduce(static_cast<DInt>(A) * inv(B));
            }
            constexpr Int inv(Int A) const; // TODO: Implement

            constexpr Int pow(Int A, long long b) const {
                Int P = make(1);
                for (; b; b >>= 1) {
                    if (b & 1) P = mul(P, A);
                    A = mul(A, A);
                }
                return P;
            }

        private:
            static constexpr Int divR(DInt t) { return t >> bits; }
            static constexpr Int modR(DInt t) { return t & mask; }

            static constexpr Int calcN2(Int N) {
                // - N * N2 = 1 (mod R)
                // N2 = -N^{-1} (mod R)

                // calculates N^{-1} (mod R) by Newton's method
                DInt invN = N; // = N^{-1} (mod 2^2)
                for (uint32_t cur_bits = 2; cur_bits < bits; cur_bits *= 2) {
                    // loop invariant: invN = N^{-1} (mod 2^cur_bits)

                    // x = a^{-1} mod m => x(2-ax) = a^{-1} mod m^2 because:
                    //  ax = 1 (mod m)
                    //  => (ax-1)^2 = 0 (mod m^2)
                    //  => 2ax - a^2x^2 = 1 (mod m^2)
                    //  => a(x(2-ax)) = 1 (mod m^2)
                    invN = modR(invN * modR(2 - N * invN));
                }
                assert(modR(N * invN) == 1);

                return modR(-invN);
            }
            static constexpr Int calcR2(Int N, Int N2) {
                // R * R2 - N * N2 = 1
                // => R2 = (1 + N * N2) / R
                return divR(1 + static_cast<DInt>(N) * N2);
            }
            static constexpr Int calcRR(Int N) {
                return -DInt(N) % N;
            }
        };
    } // namespace internal::montgomery
    using Montgomery32 = internal::montgomery::Montgomery<uint32_t, uint64_t>;
    using Montgomery64 = internal::montgomery::Montgomery<uint64_t, __uint128_t>;
} // namespace suisen

namespace suisen::miller_rabin {
    namespace internal {
        constexpr uint64_t THRESHOLD_1 = 341531ULL;
        constexpr uint64_t BASE_1[]{ 9345883071009581737ULL };

        constexpr uint64_t THRESHOLD_2 = 1050535501ULL;
        constexpr uint64_t BASE_2[]{ 336781006125ULL, 9639812373923155ULL };

        constexpr uint64_t THRESHOLD_3 = 350269456337ULL;
        constexpr uint64_t BASE_3[]{ 4230279247111683200ULL, 14694767155120705706ULL, 16641139526367750375ULL };

        constexpr uint64_t THRESHOLD_4 = 55245642489451ULL;
        constexpr uint64_t BASE_4[]{ 2ULL, 141889084524735ULL, 1199124725622454117ULL, 11096072698276303650ULL };

        constexpr uint64_t THRESHOLD_5 = 7999252175582851ULL;
        constexpr uint64_t BASE_5[]{ 2ULL, 4130806001517ULL, 149795463772692060ULL, 186635894390467037ULL, 3967304179347715805ULL };

        constexpr uint64_t THRESHOLD_6 = 585226005592931977ULL;
        constexpr uint64_t BASE_6[]{ 2ULL, 123635709730000ULL, 9233062284813009ULL, 43835965440333360ULL, 761179012939631437ULL, 1263739024124850375ULL };

        constexpr uint64_t BASE_7[]{ 2U, 325U, 9375U, 28178U, 450775U, 9780504U, 1795265022U };

        template <auto BASE, std::size_t SIZE>
        constexpr bool miller_rabin(uint64_t n) {
            if (n == 2 or n == 3 or n == 5 or n == 7) return true;
            if (n <= 1 or n % 2 == 0 or n % 3 == 0 or n % 5 == 0 or n % 7 == 0) return false;
            if (n < 121) return true;

            const uint32_t s = __builtin_ctzll(n - 1); // >= 1
            const uint64_t d = (n - 1) >> s;

            const Montgomery64 mg{ n };

            const uint64_t one = mg.make(1), minus_one = mg.make(n - 1);

            for (std::size_t i = 0; i < SIZE; ++i) {
                uint64_t a = BASE[i] % n;
                if (a == 0) continue;
                uint64_t Y = mg.pow(mg.make(a), d);
                if (Y == one) continue;
                for (uint32_t r = 0;; ++r, Y = mg.mul(Y, Y)) {
                    // Y = a^(d 2^r)
                    if (Y == minus_one) break;
                    if (r == s - 1) return false;
                }
            }
            return true;
        }
    }

    template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
    constexpr bool is_prime(T n) {
        if constexpr (std::is_signed_v<T>) {
            assert(n >= 0);
        }
        const std::make_unsigned_t<T> n_unsigned = n;
        assert(n_unsigned <= std::numeric_limits<uint64_t>::max()); // n < 2^64
        using namespace internal;
        if (n_unsigned < THRESHOLD_1) return miller_rabin<BASE_1, 1>(n_unsigned);
        if (n_unsigned < THRESHOLD_2) return miller_rabin<BASE_2, 2>(n_unsigned);
        if (n_unsigned < THRESHOLD_3) return miller_rabin<BASE_3, 3>(n_unsigned);
        if (n_unsigned < THRESHOLD_4) return miller_rabin<BASE_4, 4>(n_unsigned);
        if (n_unsigned < THRESHOLD_5) return miller_rabin<BASE_5, 5>(n_unsigned);
        if (n_unsigned < THRESHOLD_6) return miller_rabin<BASE_6, 6>(n_unsigned);
        return miller_rabin<BASE_7, 7>(n_unsigned);
    }
} // namespace suisen::miller_rabin

#include <vector>

namespace suisen::internal::sieve {

constexpr std::uint8_t K = 8;
constexpr std::uint8_t PROD = 2 * 3 * 5;
constexpr std::uint8_t RM[K] = { 1,  7, 11, 13, 17, 19, 23, 29 };
constexpr std::uint8_t DR[K] = { 6,  4,  2,  4,  2,  4,  6,  2 };
constexpr std::uint8_t DF[K][K] = {
    { 0, 0, 0, 0, 0, 0, 0, 1 }, { 1, 1, 1, 0, 1, 1, 1, 1 },
    { 2, 2, 0, 2, 0, 2, 2, 1 }, { 3, 1, 1, 2, 1, 1, 3, 1 },
    { 3, 3, 1, 2, 1, 3, 3, 1 }, { 4, 2, 2, 2, 2, 2, 4, 1 },
    { 5, 3, 1, 4, 1, 3, 5, 1 }, { 6, 4, 2, 4, 2, 4, 6, 1 },
};
constexpr std::uint8_t DRP[K] = { 48, 32, 16, 32, 16, 32, 48, 16 };
constexpr std::uint8_t DFP[K][K] = {
    {  0,  0,  0,  0,  0,  0,  0,  8 }, {  8,  8,  8,  0,  8,  8,  8,  8 },
    { 16, 16,  0, 16,  0, 16, 16,  8 }, { 24,  8,  8, 16,  8,  8, 24,  8 },
    { 24, 24,  8, 16,  8, 24, 24,  8 }, { 32, 16, 16, 16, 16, 16, 32,  8 },
    { 40, 24,  8, 32,  8, 24, 40,  8 }, { 48, 32, 16, 32, 16, 32, 48,  8 },
};

constexpr std::uint8_t MASK[K][K] = {
    { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }, { 0x02, 0x20, 0x10, 0x01, 0x80, 0x08, 0x04, 0x40 },
    { 0x04, 0x10, 0x01, 0x40, 0x02, 0x80, 0x08, 0x20 }, { 0x08, 0x01, 0x40, 0x20, 0x04, 0x02, 0x80, 0x10 },
    { 0x10, 0x80, 0x02, 0x04, 0x20, 0x40, 0x01, 0x08 }, { 0x20, 0x08, 0x80, 0x02, 0x40, 0x01, 0x10, 0x04 },
    { 0x40, 0x04, 0x08, 0x80, 0x01, 0x10, 0x20, 0x02 }, { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 },
};
constexpr std::uint8_t OFFSET[K][K] = {
    { 0, 1, 2, 3, 4, 5, 6, 7, },
    { 1, 5, 4, 0, 7, 3, 2, 6, },
    { 2, 4, 0, 6, 1, 7, 3, 5, },
    { 3, 0, 6, 5, 2, 1, 7, 4, },
    { 4, 7, 1, 2, 5, 6, 0, 3, },
    { 5, 3, 7, 1, 6, 0, 4, 2, },
    { 6, 2, 3, 7, 0, 4, 5, 1, },
    { 7, 6, 5, 4, 3, 2, 1, 0, },
};

constexpr std::uint8_t mask_to_index(const std::uint8_t bits) {
    switch (bits) {
        case 1 << 0: return 0;
        case 1 << 1: return 1;
        case 1 << 2: return 2;
        case 1 << 3: return 3;
        case 1 << 4: return 4;
        case 1 << 5: return 5;
        case 1 << 6: return 6;
        case 1 << 7: return 7;
        default: assert(false);
    }
}
} // namespace suisen::internal::sieve

namespace suisen {

template <unsigned int N>
class SimpleSieve {
    private:
        static constexpr unsigned int siz = N / internal::sieve::PROD + 1;
        static std::uint8_t flag[siz];
    public:
        SimpleSieve() {
            using namespace internal::sieve;
            flag[0] |= 1;
            unsigned int k_max = (unsigned int) std::sqrt(N + 2) / PROD;
            for (unsigned int kp = 0; kp <= k_max; ++kp) {
                for (std::uint8_t bits = ~flag[kp]; bits; bits &= bits - 1) {
                    const std::uint8_t mp = mask_to_index(bits & -bits), m = RM[mp];
                    unsigned int kr = kp * (PROD * kp + 2 * m) + m * m / PROD;
                    for (std::uint8_t mq = mp; kr < siz; kr += kp * DR[mq] + DF[mp][mq], ++mq &= 7) {
                        flag[kr] |= MASK[mp][mq];
                    }
                }
            }
        }
        std::vector<int> prime_list(unsigned int max_val = N) const {
            using namespace internal::sieve;
            std::vector<int> res { 2, 3, 5 };
            res.reserve(max_val / 25);
            for (unsigned int i = 0, offset = 0; i < siz and offset < max_val; ++i, offset += PROD) {
                for (uint8_t f = ~flag[i]; f;) {
                    uint8_t g = f & -f;
                    res.push_back(offset + RM[mask_to_index(g)]);
                    f ^= g;
                }
            }
            while (res.size() and (unsigned int) res.back() > max_val) res.pop_back();
            return res;
        }
        bool is_prime(const unsigned int p) const {
            using namespace internal::sieve;
            switch (p) {
                case 2: case 3: case 5: return true;
                default:
                    switch (p % PROD) {
                        case RM[0]: return ((flag[p / PROD] >> 0) & 1) == 0;
                        case RM[1]: return ((flag[p / PROD] >> 1) & 1) == 0;
                        case RM[2]: return ((flag[p / PROD] >> 2) & 1) == 0;
                        case RM[3]: return ((flag[p / PROD] >> 3) & 1) == 0;
                        case RM[4]: return ((flag[p / PROD] >> 4) & 1) == 0;
                        case RM[5]: return ((flag[p / PROD] >> 5) & 1) == 0;
                        case RM[6]: return ((flag[p / PROD] >> 6) & 1) == 0;
                        case RM[7]: return ((flag[p / PROD] >> 7) & 1) == 0;
                        default: return false;
                    }
            }
        }
};
template <unsigned int N>
std::uint8_t SimpleSieve<N>::flag[SimpleSieve<N>::siz];

template <unsigned int N>
class Sieve {
    private:
        static constexpr unsigned int base_max = (N + 1) * internal::sieve::K / internal::sieve::PROD;
        static unsigned int pf[base_max + internal::sieve::K];

    public:
        Sieve() {
            using namespace internal::sieve;
            pf[0] = 1;
            unsigned int k_max = ((unsigned int) std::sqrt(N + 1) - 1) / PROD;
            for (unsigned int kp = 0; kp <= k_max; ++kp) {
                const int base_i = kp * K, base_act_i = kp * PROD;
                for (int mp = 0; mp < K; ++mp) {
                    const int m = RM[mp], i = base_i + mp;
                    if (pf[i] == 0) {
                        unsigned int act_i = base_act_i + m;
                        unsigned int base_k = (kp * (PROD * kp + 2 * m) + m * m / PROD) * K;
                        for (std::uint8_t mq = mp; base_k <= base_max; base_k += kp * DRP[mq] + DFP[mp][mq], ++mq &= 7) {
                            pf[base_k + OFFSET[mp][mq]] = act_i;
                        }
                    }
                }
            }
        }
        bool is_prime(const unsigned int p) const {
            using namespace internal::sieve;
            switch (p) {
                case 2: case 3: case 5: return true;
                default:
                    switch (p % PROD) {
                        case RM[0]: return pf[p / PROD * K + 0] == 0;
                        case RM[1]: return pf[p / PROD * K + 1] == 0;
                        case RM[2]: return pf[p / PROD * K + 2] == 0;
                        case RM[3]: return pf[p / PROD * K + 3] == 0;
                        case RM[4]: return pf[p / PROD * K + 4] == 0;
                        case RM[5]: return pf[p / PROD * K + 5] == 0;
                        case RM[6]: return pf[p / PROD * K + 6] == 0;
                        case RM[7]: return pf[p / PROD * K + 7] == 0;
                        default: return false;
                    }
            }
        }
        int prime_factor(const unsigned int p) const {
            using namespace internal::sieve;
            switch (p % PROD) {
                case  0: case  2: case  4: case  6: case  8:
                case 10: case 12: case 14: case 16: case 18:
                case 20: case 22: case 24: case 26: case 28: return 2;
                case  3: case  9: case 15: case 21: case 27: return 3;
                case  5: case 25: return 5;
                case RM[0]: return pf[p / PROD * K + 0] ? pf[p / PROD * K + 0] : p;
                case RM[1]: return pf[p / PROD * K + 1] ? pf[p / PROD * K + 1] : p;
                case RM[2]: return pf[p / PROD * K + 2] ? pf[p / PROD * K + 2] : p;
                case RM[3]: return pf[p / PROD * K + 3] ? pf[p / PROD * K + 3] : p;
                case RM[4]: return pf[p / PROD * K + 4] ? pf[p / PROD * K + 4] : p;
                case RM[5]: return pf[p / PROD * K + 5] ? pf[p / PROD * K + 5] : p;
                case RM[6]: return pf[p / PROD * K + 6] ? pf[p / PROD * K + 6] : p;
                case RM[7]: return pf[p / PROD * K + 7] ? pf[p / PROD * K + 7] : p;
                default: assert(false);
            }
        }
        /**
         * Returns a vector of `{ prime, index }`.
         */
        std::vector<std::pair<int, int>> factorize(unsigned int n) const {
            assert(0 < n and n <= N);
            std::vector<std::pair<int, int>> prime_powers;
            while (n > 1) {
                int p = prime_factor(n), c = 0;
                do { n /= p, ++c; } while (n % p == 0);
                prime_powers.emplace_back(p, c);
            }
            return prime_powers;
        }
        /**
         * Returns the divisors of `n`.
         * It is NOT guaranteed that the returned vector is sorted.
         */
        std::vector<int> divisors(unsigned int n) const {
            assert(0 < n and n <= N);
            std::vector<int> divs { 1 };
            for (auto [prime, index] : factorize(n)) {
                int sz = divs.size();
                for (int i = 0; i < sz; ++i) {
                    int d = divs[i];
                    for (int j = 0; j < index; ++j) {
                        divs.push_back(d *= prime);
                    }
                }
            }
            return divs;
        }
};
template <unsigned int N>
unsigned int Sieve<N>::pf[Sieve<N>::base_max + internal::sieve::K];
} // namespace suisen

namespace suisen::fast_factorize {
    namespace internal {
        template <typename T>
        constexpr int floor_log2(T n) {
            int i = 0;
            while (n) n >>= 1, ++i;
            return i - 1;
        }
        template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
        T pollard_rho(const T n) {
            using M = safely_multipliable_t<T>;
            const T m = T(1) << (floor_log2(n) / 5);

            static std::mt19937_64 rng{std::random_device{}()};
            std::uniform_int_distribution<T> dist(0, n - 1);

            // const Montgomery64 mg{n};

            while (true) {
                T c = dist(rng);
                auto f = [&](T x) -> T { return (M(x) * x + c) % n; };
                T x, y = 2, ys, q = 1, g = 1;
                for (T r = 1; g == 1; r <<= 1) {
                    x = y;
                    for (T i = 0; i < r; ++i) y = f(y);
                    for (T k = 0; k < r and g == 1; k += m) {
                        ys = y;
                        for (T i = 0; i < std::min(m, r - k); ++i) y = f(y), q = M(q) * (x > y ? x - y : y - x) % n;
                        g = std::gcd(q, n);
                    }
                }
                if (g == n) {
                    g = 1;
                    while (g == 1) ys = f(ys), g = std::gcd(x > ys ? x - ys : ys - x, n);
                }
                if (g < n) {
                    if (miller_rabin::is_prime(g)) return g;
                    if (T d = n / g; miller_rabin::is_prime(d)) return d;
                    return pollard_rho(g);
                }
            }
        }
    }

    template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
    std::vector<std::pair<T, int>> factorize(T n) {
        static constexpr int threshold = 1000000;
        static Sieve<threshold> sieve;

        std::vector<std::pair<T, int>> res;
        if (n <= threshold) {
            for (auto [p, q] : sieve.factorize(n)) res.emplace_back(p, q);
            return res;
        }

        if ((n & 1) == 0) {
            int q = 0;
            do ++q, n >>= 1; while ((n & 1) == 0);
            res.emplace_back(2, q);
        }
        for (T p = 3; p * p <= n; p += 2) {
            if (p >= 101 and n >= 1 << 20) {
                while (n > 1) {
                    if (miller_rabin::is_prime(n)) {
                        res.emplace_back(std::exchange(n, 1), 1);
                    } else {
                        p = internal::pollard_rho(n);
                        int q = 0;
                        do ++q, n /= p; while (n % p == 0);
                        res.emplace_back(p, q);
                    }
                }
                break;
            }
            if (n % p == 0) {
                int q = 0;
                do ++q, n /= p; while (n % p == 0);
                res.emplace_back(p, q);
            }
        }
        if (n > 1) res.emplace_back(n, 1);
        return res;
    }
} // namespace suisen::fast_factorize


namespace suisen {
    namespace internal::order_prime_mod {
        template <int id>
        struct mint64 {
            static uint64_t mod() { return _mod; }
            static void set_mod(uint64_t new_mod) { mint64<id>::_mod = new_mod; }

            mint64() : _val(0) {}
            mint64(long long val) : _val(safe_mod(val)) {}

            uint64_t val() { return _val; }

            friend mint64& operator*=(mint64& x, const mint64& y) {
                x._val = __uint128_t(x._val) * y._val % _mod;
                return x;
            }
            friend mint64 operator*(mint64 x, const mint64& y) {
                x *= y;
                return x;
            }
            mint64 pow(long long b) const {
                assert(b >= 0);
                mint64 p = *this, res = 1;
                for (; b; b >>= 1) {
                    if (b & 1) res *= p;
                    p *= p;
                }
                return res;
            }
        private:
            static inline uint64_t _mod;
            uint64_t _val;

            static uint64_t safe_mod(long long val) { return (val %= _mod) < 0 ? val + _mod : val; }
        };
    }

    template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
    struct OrderMod {
        using U = std::make_unsigned_t<T>;
        OrderMod() = default;
        OrderMod(T m) : _mod(m) {
            auto factorized = fast_factorize::factorize<T>(_mod);
            _is_prime = factorized.size() == 1;
            _lambda = _carmichael(factorized);
            _phi = _totient(factorized);
            for (auto [p, q] : fast_factorize::factorize<T>(_lambda)) {
                U r = 1;
                for (int i = 0; i < q; ++i) r *= p;
                _fac_lambda.emplace_back(p, q, r);
            }
        }

        bool is_primitive_root(U a) const {
            if (_mod < 1ULL << 32) {
                using mint = atcoder::dynamic_modint<1000000000>;
                U old_mod = mint::mod();
                mint::set_mod(_mod);
                bool res = _is_primitive_root_impl<mint>(a);
                mint::set_mod(old_mod);
                return res;
            } else {
                using mint = internal::order_prime_mod::mint64<1000000000>;
                U old_mod = mint::mod();
                mint::set_mod(_mod);
                bool res = _is_primitive_root_impl<mint>(a);
                mint::set_mod(old_mod);
                return res;
            }
        }

        T primitive_root() const {
            assert(_lambda == _phi);
            if (_mod < 1ULL << 32) {
                return _primitive_root_impl<std::mt19937>();
            } else {
                return _primitive_root_impl<std::mt19937_64>();
            }
        }

        T operator()(U a) const {
            if (_mod < 1ULL << 32) {
                using mint = atcoder::dynamic_modint<1000000000>;
                U old_mod = mint::mod();
                mint::set_mod(_mod);
                T res = _order_impl<mint>(a);
                mint::set_mod(old_mod);
                return res;
            } else {
                using mint = internal::order_prime_mod::mint64<1000000000>;
                U old_mod = mint::mod();
                mint::set_mod(_mod);
                T res = _order_impl<mint>(a);
                mint::set_mod(old_mod);
                return res;
            }
        }

        T mod() const {
            return _mod;
        }
        T totient() const {
            return _phi;
        }
        T carmichael() const {
            return _lambda;
        }
        bool is_prime() const {
            return _is_prime;
        }
        std::vector<T> carmichael_prime_factors() const {
            std::vector<T> res;
            for (const auto &e : _fac_lambda) res.push_back(std::get<0>(e));
            return res;
        }

    private:
        U _mod;
        U _phi;
        U _lambda;
        bool _is_prime;

        std::vector<std::tuple<U, int, U>> _fac_lambda;

        static T _carmichael(const std::vector<std::pair<T, int>>& factorized) {
            T lambda = 1;
            for (auto [p, ep] : factorized) {
                T phi = p - 1;
                int exponent = ep - (1 + (p == 2 and ep >= 3));
                for (int i = 0; i < exponent; ++i) phi *= p;
                lambda = std::lcm(lambda, phi);
            }
            return lambda;
        }
        static T _totient(const std::vector<std::pair<T, int>>& factorized) {
            T t = 1;
            for (const auto& [p, ep] : factorized) {
                t *= p - 1;
                for (int i = 0; i < ep - 1; ++i) t *= p;
            }
            return t;
        }

        template <typename mint>
        bool _is_primitive_root_impl(U a) const {
            if (_lambda != _phi) return false;
            if (_mod == 2) return a % 2 == 1;

            const int k = _fac_lambda.size();
            U x = _lambda;
            for (const auto& [p, q, pq] : _fac_lambda) x /= p;

            mint b = mint(a).pow(x);
            if (k == 1) return b.val() != 1;

            auto dfs = [&](auto dfs, const int l, const int r, const mint val) -> bool {
                const int m = (l + r) >> 1;

                U lp = 1;
                for (int i = m; i < r; ++i) lp *= std::get<0>(_fac_lambda[i]);
                mint lval = val.pow(lp);
                if (m - l == 1) {
                    if (lval.val() == 1) return false;
                } else {
                    if (not dfs(dfs, l, m, lval)) return false;
                }

                U rp = 1;
                for (int i = l; i < m; ++i) rp *= std::get<0>(_fac_lambda[i]);
                mint rval = val.pow(rp);
                if (r - m == 1) {
                    if (rval.val() == 1) return false;
                } else {
                    if (not dfs(dfs, m, r, rval)) return false;
                }

                return true;
            };
            return dfs(dfs, 0, k, b);
        }

        template <typename Rng>
        T _primitive_root_impl() const {
            if (_mod == 2) return 1;

            Rng rng{ std::random_device{}() };
            while (true) {
                U a = rng() % (_mod - 2) + 2;
                while (not _is_prime and std::gcd(a, _mod) != 1) {
                    a = rng() % (_mod - 2) + 2;
                }
                if (is_primitive_root(a)) return a;
            }
        }

        template <typename mint>
        U _order_impl(U a) const {
            if (_mod == 2) return a % 2 == 1;

            const int k = _fac_lambda.size();

            U res = 1;

            auto update = [&](U p, mint val) {
                while (val.val() != 1) {
                    val = val.pow(p);
                    res *= p;
                }
            };

            if (k == 1) {
                update(std::get<0>(_fac_lambda.front()), a);
                return res;
            }

            auto dfs = [&](auto dfs, const int l, const int r, const mint val) -> void {
                const int m = (l + r) >> 1;

                U lp = 1;
                for (int i = m; i < r; ++i) lp *= std::get<2>(_fac_lambda[i]);
                mint lval = val.pow(lp);
                if (m - l == 1) {
                    update(std::get<0>(_fac_lambda[l]), lval);
                } else {
                    dfs(dfs, l, m, lval);
                }

                U rp = 1;
                for (int i = l; i < m; ++i) rp *= std::get<2>(_fac_lambda[i]);
                mint rval = val.pow(rp);
                if (r - m == 1) {
                    update(std::get<0>(_fac_lambda[m]), rval);
                } else {
                    dfs(dfs, m, r, rval);
                }
            };
            dfs(dfs, 0, k, a);

            return res;
        }
    };
} // namespace suisen

#include <unordered_map>

namespace suisen {
    namespace internal::discrete_logarithm {
        int floor_log2(int m) {
            int res = 0;
            while (1 << (res + 1) <= m) ++res;
            return res;
        }
    }

    template <typename mint>
    int discrete_logarithm_coprime(mint x, mint y) {
        const int m = mint::mod();
        if (y == 1 or m == 1) return 0;
        if (x == 0) return y == 0 ? 1 : -1;
        const int p = ::sqrt(m) + 1;
        mint a = mint(x).inv().pow(p);
        std::unordered_map<int, int> mp;
        mint pow_x = 1;
        for (int j = 0; j < p; ++j, pow_x *= x) mp.try_emplace(pow_x.val(), j);
        mint ya = y;
        for (int i = 0; i < p; ++i, ya *= a) {
            if (auto it = mp.find(ya.val()); it != mp.end()) return p * i + it->second;
        }
        return -1;
    }

    template <typename mint>
    int discrete_logarithm(mint x, mint y) {
        using namespace internal::discrete_logarithm;
        const int m = mint::mod();
        if (m == 1) return 0;
        const int d = floor_log2(m);
        mint pow_x = 1;
        for (int i = 0; i < d; ++i, pow_x *= x) if (pow_x == y) return i;
        const int g = std::gcd(pow_x.val(), m);
        if (y.val() % g) return -1;
        mint::set_mod(m / g);
        const int t = discrete_logarithm_coprime(mint(x.val()), mint(y.val()) * mint(pow_x.val()).inv());
        mint::set_mod(m);
        return t != -1 ? d + t : -1;
    }
} // namespace suisen

namespace suisen {
    namespace internal::index_calculus {
        template <typename mint>
        struct SystemOfLinearEquations {
            SystemOfLinearEquations() = default;
            SystemOfLinearEquations(int target_var_id) : target_var_id(target_var_id) {}

            void append(std::vector<mint> r, mint bi) {
                int ti = target_var_id + 1;
                for (int i = 0; i <= target_var_id; ++i) if (r[i] != 0) {
                    ti = i;
                    break;
                }
                if (ti > target_var_id) return;

                const int l = A.size();
                for (int i = 0; i < l; ++i) {
                    eliminate(top_pos[i], A[i], b[i], ti, r, bi);
                    if (ti > target_var_id) return;
                }
                A.push_back(std::move(r));
                top_pos.push_back(ti);
                b.push_back(bi);
            }
            void append(const std::vector<std::pair<int, mint>>& ri, mint bi) {
                std::vector<mint> r(target_var_id + 1);
                for (auto [j, v] : ri) r[j] = v;
                append(r, bi);
            }

            std::optional<mint> target() {
                if (top_pos.empty() or top_pos.back() != target_var_id) return std::nullopt;
                auto [g, inv_c] = atcoder::internal::inv_gcd(A.back().back().val(), mint::mod());
                return g == 1 ? std::make_optional(b.back() * inv_c) : std::nullopt;
            }

            void change_target() {
                const int l = A.size();

                int t = -1;
                for (int i = l - 1; i >= 0; --i) {
                    if (A[i][target_var_id] != 0) {
                        t = i;
                        break;
                    }
                }

                SystemOfLinearEquations<mint> nxt(target_var_id);
                for (int i = l - 1; i > t; --i) {
                    nxt.append(A[i], b[i]);
                }

                for (int i = t - 1; i >= 0; --i) {
                    if (A[i][target_var_id] != 0) {
                        const auto T = euclid(A[t][target_var_id].val(), A[i][target_var_id].val());
                        for (int col = top_pos[i]; col <= target_var_id; ++col) {
                            apply_euclid(T, A[t][col], A[i][col]);
                        }
                        apply_euclid(T, b[t], b[i]);
                    }
                    nxt.append(A[i], b[i]);
                }

                *this = std::move(nxt);
            }
        private:
            int target_var_id;
            std::vector<std::vector<mint>> A;
            std::vector<int> top_pos;
            std::vector<mint> b;

            // Euclidean Algorithm
            // A * [a, b] = [gcd(a,b), 0]
            static std::array<std::array<int, 2>, 2> euclid(int a, int b) {
                int x = 1, y = 0, z = 0, w = 1;
                while (b) {
                    int p = a / b, q = a % b;
                    x -= p * z, std::swap(x, z);
                    y -= p * w, std::swap(y, w);
                    a = b, b = q;
                }
                return { x, y, z, w };
            }
            static void apply_euclid(const std::array<std::array<int, 2>, 2>& A, mint& x, mint& y) {
                mint x2 = x, y2 = y;
                x = A[0][0] * x2 + A[0][1] * y2;
                y = A[1][0] * x2 + A[1][1] * y2;
            }

            static void eliminate(int& ti, std::vector<mint>& ri, mint& bi, int& tj, std::vector<mint>& rj, mint& bj) {
                if (ti != tj) {
                    if (ti > tj) std::swap(ti, tj), std::swap(ri, rj), std::swap(bi, bj);
                    return;
                }
                const int siz = ri.size();
                assert(int(rj.size()) == siz);

                const auto T = euclid(ri[ti].val(), rj[tj].val());
                for (int col = ti; col < siz; ++col) {
                    apply_euclid(T, ri[col], rj[col]);
                }
                apply_euclid(T, bi, bj);

                while (tj < siz and rj[tj] == 0) ++tj;
            }
        };
    }

    // mod prime only.
    struct IndexCalculus {
    private:
        using mint = atcoder::dynamic_modint<73495793>;
        using mint2 = atcoder::dynamic_modint<73495794>;
    public:
        IndexCalculus() = default;
        IndexCalculus(const OrderMod<int>& ord) : _p(ord.mod()), _ord(ord) {};

        int discrete_log(int a, int b, int p) {
            int old_mod = mint::mod(), old_mod2 = mint2::mod();
            mint::set_mod(p), mint2::set_mod(p - 1);
            int res = discrete_log_impl(a, b, p);
            mint::set_mod(old_mod), mint2::set_mod(old_mod2);
            return res;
        }
    private:
        static constexpr uint32_t primes[60]{
              2,   3,   5,   7,  11,  13,  17,  19,  23,  29,
             31,  37,  41,  43,  47,  53,  59,  61,  67,  71,
             73,  79,  83,  89,  97, 101, 103, 107, 109, 113,
            127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
            179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
            233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
        };
        // inv_primes[i] = ceil(2^32 / primes[i])
        static constexpr uint32_t inv_primes[60]{
            2147483648, 1431655766, 858993460, 613566757, 390451573, 330382100, 252645136, 226050911, 186737709, 148102321,
             138547333,  116080198, 104755300,  99882961,  91382283,  81037119,  72796056,  70409300,  64103990,  60492498,
              58835169,   54366675,  51746594,  48258060,  44278014,  42524429,  41698712,  40139882,  39403370,  38008561,
              33818641,   32786010,  31350127,  30899046,  28825284,  28443493,  27356480,  26349493,  25718368,  24826401,
              23994231,   23729102,  22486740,  22253717,  21801865,  21582751,  20355296,  19259944,  18920561,  18755316,
              18433337,   17970575,  17821442,  17111424,  16711936,  16330675,  15966422,  15848588,  15505298,  15284582,
        };

        int _p = -1;
        OrderMod<int> _ord;
        int _a = -1;
        internal::index_calculus::SystemOfLinearEquations<mint2> _eq;

        static int safe_mod(int a, int p) { return ((a %= p) < 0) ? a + p : a; }

        static int discrete_log_naive(mint a, mint b) {
            mint pow_a = 1;
            for (int res = 0; res < int(mint::mod()) - 1; ++res) {
                if (pow_a == b) return res;
                pow_a *= a;
            }
            return -1;
        }

        static std::optional<std::vector<std::pair<int, mint2>>> try_factorize(const int B, uint32_t v) {
            assert(B <= 60);
            std::vector<std::pair<int, mint2>> res;
            for (int i = 0; i < B; ++i) {
                const uint32_t m = primes[B - i - 1], im = inv_primes[B - i - 1];
                if (uint32_t q = (uint64_t(v) * im) >> 32; v == q * m) {
                    // q = floor(v/m)
                    int c = 0;
                    do v = q, q = (uint64_t(v) * im) >> 32, ++c; while (v == q * m);
                    res.emplace_back(i, mint2::raw(c));
                }
            }
            return v == 1 ? std::make_optional(std::move(res)) : std::nullopt;
        }

        int discrete_log_impl(int a, int b, int p) {
            a = safe_mod(a, p), b = safe_mod(b, p);

            if (b == 0) return a == 0 ? 1 : -1;
            if (b == 1) return 0;
            if (a == 0) return -1;
            if (a == 1) return -1;

            if (p <= 64) {
                return discrete_log_naive(a, b);
            }

            const int B = ::pow(p - 1, 1 / (2 * ::sqrt(::log(p - 1) / ::log(::log(p - 1)))));
            assert(B <= 60);

            if (p != _p) {
                _p = p, _ord = OrderMod<int>(p);
                _a = a, _eq = internal::index_calculus::SystemOfLinearEquations<mint2>(B);
            } else if (a != _a) {
                _a = a, _eq = internal::index_calculus::SystemOfLinearEquations<mint2>(B);
            } else {
                _eq.change_target();
            }

            assert(_ord.is_prime());

            const int ord_a = _ord(a), ord_b = _ord(b);
            if (ord_a % ord_b) return -1;

            static std::mt19937 rng{};
            while (true) {
                const int k = rng() % ord_a;
                auto opt_fac = try_factorize(B, (mint(a).pow(k) * b).val());
                if (not opt_fac) continue;
                auto& fac = *opt_fac;
                fac.emplace_back(B, -1);
                _eq.append(std::move(fac), k);
                if (auto opt_res = _eq.target()) return opt_res->val() % _ord(a);
            }
        }
    };

    namespace internal::pohlig_hellman {
        using mint = atcoder::dynamic_modint<73495793>;

        int naive(int a, int b, int n) {
            mint pow_a = 1;
            for (int res = 0; res < n; ++res) {
                if (pow_a == b) return res;
                pow_a *= a;
            }
            return -1;
        }
        int pohlig_hellman_prime_power_bsgs(int a, int b, int n, int p, int q) {
            const mint gamma = mint(a).pow(n / p);
            const mint inv_a = mint(a).inv();

            int x = 0;
            for (int k = 0, pl = 1, pr = n; k < q; ++k) {
                pr /= p;
                int d = suisen::discrete_logarithm_coprime(gamma, (inv_a.pow(x) * b).pow(pr));
                if (d == -1) return -1;
                x += pl * d;
                pl *= p;
            }
            return x;
        }
        int pohlig_hellman_prime_power_index_calculus(int a, int b, int n, int p, int q, const OrderMod<int>& ord) {
            const mint gamma = mint(a).pow(n / p);
            const mint inv_a = mint(a).inv();

            IndexCalculus ic{ ord };

            int x = 0;
            for (int k = 0, pl = 1, pr = n; k < q; ++k) {
                pr /= p;
                int d = ic.discrete_log(gamma.val(), (inv_a.pow(x) * b).pow(pr).val(), ord.mod());
                x += pl * d;
                pl *= p;
            }
            return x;
        }

        int pohlig_hellman(int a, int b, int p, int q, const OrderMod<int> &ord) {
            // gcd(a, p) = 1

            if (b == 1) return 0;
            if (a == 1) return b == 1 ? 0 : -1;
            if (b % p == 0) return -1;

            if (q == 1) return IndexCalculus{ ord }.discrete_log(a, b, p);

            const int pq = ord.mod();

            const int n = ord(a);
            if (n <= 64) return naive(a, b, pq);
            if (n % ord(b)) return -1;

            const std::vector<std::pair<int, int>> fac_n = [&] {
                std::vector<std::pair<int, int>> res;
                int n2 = n;
                for (int p : ord.carmichael_prime_factors()) if (n2 % p == 0) {
                    int& c = res.emplace_back(p, 0).second;
                    do n2 /= p, ++c; while (n2 % p == 0);
                }
                return res;
            }();
            std::vector<long long> rs, ms;
            for (auto [p, q] : fac_n) {
                int pq = 1;
                for (int i = 0; i < q; ++i) pq *= p;
                int na = mint(a).pow(n / pq).val(), nb = mint(b).pow(n / pq).val();
                int x;
                if (pq <= 64) {
                    x = naive(na, nb, pq);
                } else if (ord.is_prime()) {
                    x = pohlig_hellman_prime_power_index_calculus(na, nb, pq, p, q, ord);
                } else {
                    x = pohlig_hellman_prime_power_bsgs(na, nb, pq, p, q);
                }
                if (x == -1) return -1;
                rs.push_back(x), ms.push_back(pq);
            }
            return atcoder::crt(rs, ms).first;
        }

        int discrete_logarithm_crt(int a, int b, int m) {
            assert(std::gcd(a, m) == 1);

            long long r = 0, md = 1;
            for (auto [p, q] : fast_factorize::factorize(m)) {
                int pq = 1;
                for (int i = 0; i < q; ++i) pq *= p;
                mint::set_mod(pq);
                OrderMod ord(pq);
                const long long r2 = pohlig_hellman(a % pq, b % pq, p, q, ord);
                if (r2 == -1) return -1;
                const long long md2 = ord(a);
                std::tie(r, md) = atcoder::crt({ r, r2 }, { md, md2 });
                if (md == 0) return -1;
            }
            return r;
        }

        int floor_log2(int m) {
            int res = 0;
            while (1 << (res + 1) <= m) ++res;
            return res;
        }

        int discrete_logarithm(int a, int b, int m) {
            if (m == 1 or b == 1) return 0;
            if (a == 0) return b == 0 ? 1 : b == 1 ? 0 : -1;
            if (a == 1) return b == 1 ? 0 : -1;

            const int d = floor_log2(m);
            mint pow_x = 1;
            for (int i = 0; i < d; ++i, pow_x *= a) if (pow_x == b) return i;
            const int g = std::gcd(pow_x.val(), m);
            if (b % g) return -1;
            mint::set_mod(m / g);
            const int t = discrete_logarithm_crt(mint(a).val(), (mint(b) / pow_x.val()).val(), m / g);
            return t != -1 ? d + t : -1;
        }
    }

    int discrete_logarithm_fast(int a, int b, int m) {
        if ((a %= m) < 0) a += m;
        if ((b %= m) < 0) b += m;
        int old_mod = internal::pohlig_hellman::mint::mod();
        internal::pohlig_hellman::mint::set_mod(m);
        int res = internal::pohlig_hellman::discrete_logarithm(a, b, m);
        internal::pohlig_hellman::mint::set_mod(old_mod);
        return res;
    }
} // namespace suisen





str ts(mint s) { return ts(s.v); }
str ts(mint1 s) { return ts(s.v); }
void solve() {
	int n; re(n);

	vector<mint> v(n);
	for (int i = 0; i < n; i++) {
		int x; re(x); v[i] = x;
	}

	string s;
	re(s);

	Poly<mint1> stars(n-1);
	for (int i = 0; i < n-1; i++) stars[i]=(s[i]=='-');
	
	Poly<mint1> dlog(n-1);
	for (int i = 1; i < n; i++) dlog[i-1] = -suisen::discrete_logarithm_fast(3,i,base.mod);

	for (int i = n-2; i >= 2; i--) dlog[i] -= dlog[i-2];
	dlog[0] += suisen::discrete_logarithm_fast(3,base.mod-1,base.mod);

	Poly<mint1> den = stars * dlog;

	mint ans = 0;
	for (int i = 0; i < n; i++) {
		mint prod;
		if (i>=2 && s[i-2]=='-') prod=0;
		else if (i == 0) prod = 1;
		else prod = mint(3).pow(den[i-1].v);
		
		//if (i>=1) dbg(i, prod, den[i-1]);
		mint prob = (1 + prod) / 2;
		ans += (2*prob - 1) * v[i];
	}

	for (int i = 1; i <= n-1; i++) {
		ans *= mint(i);
	}

	ps(ans.v);
}


















































	







Details

answer.code:2304:18: error: ‘optional’ in namespace ‘std’ does not name a template type
 2304 |             std::optional<mint> target() {
      |                  ^~~~~~~~
answer.code:1506:1: note: ‘std::optional’ is defined in header ‘<optional>’; did you forget to ‘#include <optional>’?
 1505 | #include <iterator>
  +++ |+#include <optional>
 1506 | #include <tuple>
answer.code:2433:21: error: ‘optional’ in namespace ‘std’ does not name a template type
 2433 |         static std::optional<std::vector<std::pair<int, mint2>>> try_factorize(const int B, uint32_t v) {
      |                     ^~~~~~~~
answer.code:2433:16: note: ‘std::optional’ is defined in header ‘<optional>’; did you forget to ‘#include <optional>’?
 2433 |         static std::optional<std::vector<std::pair<int, mint2>>> try_factorize(const int B, uint32_t v) {
      |                ^~~
answer.code: In member function ‘int suisen::IndexCalculus::discrete_log_impl(int, int, int)’:
answer.code:2480:32: error: ‘try_factorize’ was not declared in this scope; did you mean ‘fast_factorize’?
 2480 |                 auto opt_fac = try_factorize(B, (mint(a).pow(k) * b).val());
      |                                ^~~~~~~~~~~~~
      |                                fast_factorize
answer.code:2485:40: error: ‘struct suisen::internal::index_calculus::SystemOfLinearEquations<atcoder::dynamic_modint<73495794> >’ has no member named ‘target’
 2485 |                 if (auto opt_res = _eq.target()) return opt_res->val() % _ord(a);
      |                                        ^~~~~~