QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#107884 | #6324. Expanded Hull | maspy | AC ✓ | 3656ms | 9472kb | C++23 | 38.4kb | 2023-05-23 03:30:52 | 2023-05-23 03:30:56 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
assert(!que.empty());
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
assert(!que.empty());
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>
namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
template <class T>
static auto check(T &&x) -> decltype(x.write(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};
struct has_read_impl {
template <class T>
static auto check(T &&x) -> decltype(x.read(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};
struct Scanner {
FILE *fp;
char line[(1 << 15) + 1];
size_t st = 0, ed = 0;
void reread() {
memmove(line, line + st, ed - st);
ed -= st;
st = 0;
ed += fread(line + ed, 1, (1 << 15) - ed, fp);
line[ed] = '\0';
}
bool succ() {
while (true) {
if (st == ed) {
reread();
if (st == ed) return false;
}
while (st != ed && isspace(line[st])) st++;
if (st != ed) break;
}
if (ed - st <= 50) {
bool sep = false;
for (size_t i = st; i < ed; i++) {
if (isspace(line[i])) {
sep = true;
break;
}
}
if (!sep) reread();
}
return true;
}
template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
while (true) {
size_t sz = 0;
while (st + sz < ed && !isspace(line[st + sz])) sz++;
ref.append(line + st, sz);
st += sz;
if (!sz || st != ed) break;
reread();
}
return true;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
ref = T(0);
while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
if (neg) ref = -ref;
return true;
}
template <typename T,
typename enable_if<has_read<T>::value>::type * = nullptr>
inline bool read_single(T &x) {
x.read();
return true;
}
bool read_single(double &ref) {
string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
bool read_single(char &ref) {
string s;
if (!read_single(s) || s.size() != 1) return false;
ref = s[0];
return true;
}
template <class T>
bool read_single(vector<T> &ref) {
for (auto &d: ref) {
if (!read_single(d)) return false;
}
return true;
}
template <class T, class U>
bool read_single(pair<T, U> &p) {
return (read_single(p.first) && read_single(p.second));
}
template <size_t N = 0, typename T>
void read_single_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
read_single(x);
read_single_tuple<N + 1>(t);
}
}
template <class... T>
bool read_single(tuple<T...> &tpl) {
read_single_tuple(tpl);
return true;
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
Scanner(FILE *fp) : fp(fp) {}
};
struct Printer {
Printer(FILE *_fp) : fp(_fp) {}
~Printer() { flush(); }
static constexpr size_t SIZE = 1 << 15;
FILE *fp;
char line[SIZE], small[50];
size_t pos = 0;
void flush() {
fwrite(line, 1, pos, fp);
pos = 0;
}
void write(const char val) {
if (pos == SIZE) flush();
line[pos++] = val;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void write(T val) {
if (pos > (1 << 15) - 50) flush();
if (val == 0) {
write('0');
return;
}
if (val < 0) {
write('-');
val = -val; // todo min
}
size_t len = 0;
while (val) {
small[len++] = char(0x30 | (val % 10));
val /= 10;
}
for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
pos += len;
}
void write(const string s) {
for (char c: s) write(c);
}
void write(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) write(s[i]);
}
void write(const double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
void write(const long double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
template <typename T,
typename enable_if<has_write<T>::value>::type * = nullptr>
inline void write(T x) {
x.write();
}
template <class T>
void write(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
template <class T, class U>
void write(const pair<T, U> val) {
write(val.first);
write(' ');
write(val.second);
}
template <size_t N = 0, typename T>
void write_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { write(' '); }
const auto x = std::get<N>(t);
write(x);
write_tuple<N + 1>(t);
}
}
template <class... T>
bool write(tuple<T...> tpl) {
write_tuple(tpl);
return true;
}
template <class T, size_t S>
void write(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
void write(i128 val) {
string s;
bool negative = 0;
if (val < 0) {
negative = 1;
val = -val;
}
while (val) {
s += '0' + int(val % 10);
val /= 10;
}
if (negative) s += "-";
reverse(all(s));
if (len(s) == 0) s = "0";
write(s);
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
scanner.read(head);
read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n);
if (n >= mod) return 0;
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static const int mod = mint::get_mod();
assert(-1 <= n && n < mod);
static vector<mint> dat = {1, 1};
if (n == -1) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if (dense) return C_dense<mint>(n, k);
if (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d] (1-x) ^ {-n} の計算
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "library/mod/modint.hpp"
template <int mod>
struct modint {
static_assert(mod < (1 << 30));
int val;
constexpr modint(const ll val = 0) noexcept
: val(val >= 0 ? val % mod : (mod - (-val) % mod) % mod) {}
bool operator<(const modint &other) const {
return val < other.val;
} // To use std::map
modint &operator+=(const modint &p) {
if ((val += p.val) >= mod) val -= mod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += mod - p.val) >= mod) val -= mod;
return *this;
}
modint &operator*=(const modint &p) {
val = (int)(1LL * val * p.val % mod);
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint(-val); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
#ifdef FASTIO
void write() { fastio::printer.write(val); }
void read() { fastio::scanner.read(val); }
#endif
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 998244353) return {23, 31};
if (mod == 1045430273) return {20, 363};
if (mod == 1051721729) return {20, 330};
if (mod == 1053818881) return {20, 2789};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "library/alg/monoid/mul.hpp"
template <class T>
struct Monoid_Mul {
using value_type = T;
using X = T;
static constexpr X op(const X &x, const X &y) noexcept { return x * y; }
static constexpr X inverse(const X &x) noexcept { return X(1) / x; }
static constexpr X unit() { return X(1); }
static constexpr bool commute = true;
};
#line 1 "library/ds/sliding_window_aggregation.hpp"
template <class Monoid>
struct Sliding_Window_Aggregation {
using X = typename Monoid::value_type;
using value_type = X;
int sz = 0;
vc<X> dat;
vc<X> cum_l;
X cum_r;
Sliding_Window_Aggregation()
: cum_l({Monoid::unit()}), cum_r(Monoid::unit()) {}
int size() { return sz; }
void push(X x) {
++sz;
cum_r = Monoid::op(cum_r, x);
dat.eb(x);
}
void pop() {
--sz;
cum_l.pop_back();
if (len(cum_l) == 0) {
cum_l = {Monoid::unit()};
cum_r = Monoid::unit();
while (len(dat) > 1) {
cum_l.eb(Monoid::op(dat.back(), cum_l.back()));
dat.pop_back();
}
dat.pop_back();
}
}
X lprod() { return cum_l.back(); }
X rprod() { return cum_r; }
X prod() { return Monoid::op(cum_l.back(), cum_r); }
void debug() {
print("swag");
print("dat", dat);
print("cum_l", cum_l);
print("cum_r", cum_r);
}
};
// 定数倍は目に見えて遅くなるので、queue でよいときは使わない
template <class Monoid>
struct SWAG_deque {
using X = typename Monoid::value_type;
using value_type = X;
int sz;
vc<X> dat_l, dat_r;
vc<X> cum_l, cum_r;
SWAG_deque() : sz(0), cum_l({Monoid::unit()}), cum_r({Monoid::unit()}) {}
int size() { return sz; }
void push_back(X x) {
++sz;
dat_r.eb(x);
cum_r.eb(Monoid::op(cum_r.back(), x));
}
void push_front(X x) {
++sz;
dat_l.eb(x);
cum_l.eb(Monoid::op(x, cum_l.back()));
}
void push(X x) { push_back(x); }
void clear() {
sz = 0;
dat_l.clear(), dat_r.clear();
cum_l = {Monoid::unit()}, cum_r = {Monoid::unit()};
}
void pop_front() {
if (sz == 1) return clear();
if (dat_l.empty()) rebuild();
--sz;
dat_l.pop_back();
cum_l.pop_back();
}
void pop_back() {
if (sz == 1) return clear();
if (dat_r.empty()) rebuild();
--sz;
dat_r.pop_back();
cum_r.pop_back();
}
void pop() { pop_front(); }
X lprod() { return cum_l.back(); }
X rprod() { return cum_r.back(); }
X prod() { return Monoid::op(cum_l.back(), cum_r.back()); }
X prod_all() { return prod(); }
void debug() {
print("swag");
print("dat_l", dat_l);
print("dat_r", dat_r);
print("cum_l", cum_l);
print("cum_r", cum_r);
}
private:
void rebuild() {
vc<X> X;
FOR_R(i, len(dat_l)) X.eb(dat_l[i]);
X.insert(X.end(), all(dat_r));
clear();
int m = len(X) / 2;
FOR_R(i, m) push_front(X[i]);
FOR(i, m, len(X)) push_back(X[i]);
assert(sz == len(X));
}
};
#line 2 "library/mod/mod_inv.hpp"
// long でも大丈夫
ll mod_inv(ll val, ll mod) {
val %= mod;
if (val < 0) val += mod;
ll a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
if (u < 0) u += mod;
return u;
}
#line 1 "library/poly/convolution_naive.hpp"
template <class T>
vector<T> convolution_naive(const vector<T>& a, const vector<T>& b) {
int n = int(a.size()), m = int(b.size());
vector<T> ans(n + m - 1);
if (n < m) {
FOR(j, m) FOR(i, n) ans[i + j] += a[i] * b[j];
} else {
FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j];
}
return ans;
}
#line 2 "library/poly/ntt.hpp"
template <class mint>
void ntt(vector<mint>& a, bool inverse) {
assert(mint::can_ntt());
const int rank2 = mint::ntt_info().fi;
const int mod = mint::get_mod();
static array<mint, 30> root, iroot;
static array<mint, 30> rate2, irate2;
static array<mint, 30> rate3, irate3;
static bool prepared = 0;
if (!prepared) {
prepared = 1;
root[rank2] = mint::ntt_info().se;
iroot[rank2] = mint(1) / root[rank2];
FOR_R(i, rank2) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
int n = int(a.size());
int h = topbit(n);
assert(n == 1 << h);
if (!inverse) {
int len = 0;
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
FOR(s, 1 << len) {
int offset = s << (h - len);
FOR(i, p) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
rot *= rate2[topbit(~s & -~s)];
}
len++;
} else {
int p = 1 << (h - len - 2);
mint rot = 1, imag = root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
u64 mod2 = u64(mod) * mod;
u64 a0 = a[i + offset].val;
u64 a1 = u64(a[i + offset + p].val) * rot.val;
u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val;
u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val;
u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val;
u64 na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
rot *= rate3[topbit(~s & -~s)];
}
len += 2;
}
}
} else {
mint coef = mint(1) / mint(len(a));
FOR(i, len(a)) a[i] *= coef;
int len = h;
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
FOR(s, 1 << (len - 1)) {
int offset = s << (h - len + 1);
FOR(i, p) {
u64 l = a[i + offset].val;
u64 r = a[i + offset + p].val;
a[i + offset] = l + r;
a[i + offset + p] = (mod + l - r) * irot.val;
}
irot *= irate2[topbit(~s & -~s)];
}
len--;
} else {
int p = 1 << (h - len);
mint irot = 1, iimag = iroot[2];
FOR(s, (1 << (len - 2))) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
u64 a0 = a[i + offset + 0 * p].val;
u64 a1 = a[i + offset + 1 * p].val;
u64 a2 = a[i + offset + 2 * p].val;
u64 a3 = a[i + offset + 3 * p].val;
u64 x = (mod + a2 - a3) * iimag.val % mod;
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val;
a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val;
a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val;
}
irot *= irate3[topbit(~s & -~s)];
}
len -= 2;
}
}
}
}
#line 1 "library/poly/fft.hpp"
namespace CFFT {
using real = double;
struct C {
real x, y;
C() : x(0), y(0) {}
C(real x, real y) : x(x), y(y) {}
inline C operator+(const C& c) const { return C(x + c.x, y + c.y); }
inline C operator-(const C& c) const { return C(x - c.x, y - c.y); }
inline C operator*(const C& c) const {
return C(x * c.x - y * c.y, x * c.y + y * c.x);
}
inline C conj() const { return C(x, -y); }
};
const real PI = acosl(-1);
int base = 1;
vector<C> rts = {{0, 0}, {1, 0}};
vector<int> rev = {0, 1};
void ensure_base(int nbase) {
if (nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for (int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
while (base < nbase) {
real angle = PI * 2.0 / (1 << (base + 1));
for (int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
real angle_i = angle * (2 * i + 1 - (1 << base));
rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
}
++base;
}
}
void fft(vector<C>& a, int n) {
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for (int i = 0; i < n; i++) {
if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); }
}
for (int k = 1; k < n; k <<= 1) {
for (int i = 0; i < n; i += 2 * k) {
for (int j = 0; j < k; j++) {
C z = a[i + j + k] * rts[j + k];
a[i + j + k] = a[i + j] - z;
a[i + j] = a[i + j] + z;
}
}
}
}
} // namespace CFFT
#line 7 "library/poly/convolution.hpp"
template <class mint>
vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) {
if (a.empty() || b.empty()) return {};
int n = int(a.size()), m = int(b.size());
int sz = 1;
while (sz < n + m - 1) sz *= 2;
// sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。
if ((n + m - 3) <= sz / 2) {
auto a_last = a.back(), b_last = b.back();
a.pop_back(), b.pop_back();
auto c = convolution(a, b);
c.resize(n + m - 1);
c[n + m - 2] = a_last * b_last;
FOR(i, len(a)) c[i + len(b)] += a[i] * b_last;
FOR(i, len(b)) c[i + len(a)] += b[i] * a_last;
return c;
}
a.resize(sz), b.resize(sz);
bool same = a == b;
ntt(a, 0);
if (same) {
b = a;
} else {
ntt(b, 0);
}
FOR(i, sz) a[i] *= b[i];
ntt(a, 1);
a.resize(n + m - 1);
return a;
}
template <typename mint>
vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
static const long long nttprimes[] = {754974721, 167772161, 469762049};
using mint0 = modint<754974721>;
using mint1 = modint<167772161>;
using mint2 = modint<469762049>;
vc<mint0> a0(n), b0(m);
vc<mint1> a1(n), b1(m);
vc<mint2> a2(n), b2(m);
FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val;
FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val;
auto c0 = convolution_ntt<mint0>(a0, b0);
auto c1 = convolution_ntt<mint1>(a1, b1);
auto c2 = convolution_ntt<mint2>(a2, b2);
static const long long m01 = 1LL * nttprimes[0] * nttprimes[1];
static const long long m0_inv_m1 = mint1(nttprimes[0]).inverse().val;
static const long long m01_inv_m2 = mint2(m01).inverse().val;
const int mod = mint::get_mod();
auto garner = [&](mint0 x0, mint1 x1, mint2 x2) -> mint {
int r0 = x0.val, r1 = x1.val, r2 = x2.val;
int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1];
auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * mint2(m01_inv_m2);
return mint(r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val);
};
vc<mint> c(len(c0));
FOR(i, len(c)) c[i] = garner(c0[i], c1[i], c2[i]);
return c;
}
template <typename R>
vc<double> convolution_fft(const vc<R>& a, const vc<R>& b) {
using C = CFFT::C;
int need = (int)a.size() + (int)b.size() - 1;
int nbase = 1;
while ((1 << nbase) < need) nbase++;
CFFT::ensure_base(nbase);
int sz = 1 << nbase;
vector<C> fa(sz);
for (int i = 0; i < sz; i++) {
int x = (i < (int)a.size() ? a[i] : 0);
int y = (i < (int)b.size() ? b[i] : 0);
fa[i] = C(x, y);
}
CFFT::fft(fa, sz);
C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
for (int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
fa[i] = z;
}
for (int i = 0; i < (sz >> 1); i++) {
C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * CFFT::rts[(sz >> 1) + i];
fa[i] = A0 + A1 * s;
}
CFFT::fft(fa, sz >> 1);
vector<double> ret(need);
for (int i = 0; i < need; i++) {
ret[i] = (i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
}
return ret;
}
vector<ll> convolution(const vector<ll>& a, const vector<ll>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
if (min(n, m) <= 60) return convolution_naive(a, b);
ll abs_sum_a = 0, abs_sum_b = 0;
ll LIM = 1e15;
FOR(i, n) abs_sum_a = min(LIM, abs_sum_a + abs(a[i]));
FOR(i, n) abs_sum_b = min(LIM, abs_sum_b + abs(b[i]));
if (i128(abs_sum_a) * abs_sum_b < 1e15) {
vc<double> c = convolution_fft<ll>(a, b);
vc<ll> res(len(c));
FOR(i, len(c)) res[i] = ll(floor(c[i] + .5));
return res;
}
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static const unsigned long long i1 = mod_inv(MOD2 * MOD3, MOD1);
static const unsigned long long i2 = mod_inv(MOD1 * MOD3, MOD2);
static const unsigned long long i3 = mod_inv(MOD1 * MOD2, MOD3);
using mint1 = modint<MOD1>;
using mint2 = modint<MOD2>;
using mint3 = modint<MOD3>;
vc<mint1> a1(n), b1(m);
vc<mint2> a2(n), b2(m);
vc<mint3> a3(n), b3(m);
FOR(i, n) a1[i] = a[i], a2[i] = a[i], a3[i] = a[i];
FOR(i, m) b1[i] = b[i], b2[i] = b[i], b3[i] = b[i];
auto c1 = convolution_ntt<mint1>(a1, b1);
auto c2 = convolution_ntt<mint2>(a2, b2);
auto c3 = convolution_ntt<mint3>(a3, b3);
vc<ll> c(n + m - 1);
FOR(i, n + m - 1) {
u64 x = 0;
x += (c1[i].val * i1) % MOD1 * M2M3;
x += (c2[i].val * i2) % MOD2 * M1M3;
x += (c3[i].val * i3) % MOD3 * M1M2;
ll diff = c1[i].val - ((long long)(x) % (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5]
= {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
template <typename mint>
vc<mint> convolution(const vc<mint>& a, const vc<mint>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
if (mint::can_ntt()) {
if (min(n, m) <= 50) return convolution_naive(a, b);
return convolution_ntt(a, b);
}
if (min(n, m) <= 200) return convolution_naive(a, b);
return convolution_garner(a, b);
}
#line 5 "library/poly/lagrange_interpolate_iota.hpp"
// Input: f(0), ..., f(n-1) and c. Return: f(c)
template <typename T, typename enable_if<has_mod<T>::value>::type * = nullptr>
T lagrange_interpolate_iota(vc<T> &f, T c) {
int n = len(f);
if (int(c.val) < n) return f[c.val];
auto a = f;
FOR(i, n) {
a[i] = a[i] * fact_inv<T>(i) * fact_inv<T>(n - 1 - i);
if ((n - 1 - i) & 1) a[i] = -a[i];
}
vc<T> lp(n + 1), rp(n + 1);
lp[0] = rp[n] = 1;
FOR(i, n) lp[i + 1] = lp[i] * (c - i);
FOR_R(i, n) rp[i] = rp[i + 1] * (c - i);
T ANS = 0;
FOR(i, n) ANS += a[i] * lp[i] * rp[i + 1];
return ANS;
}
// mod じゃない場合。かなり低次の多項式を想定している。O(n^2)
// Input: f(0), ..., f(n-1) and c. Return: f(c)
template <typename T, typename enable_if<!has_mod<T>::value>::type * = nullptr>
T lagrange_interpolate_iota(vc<T> &f, T c) {
const int LIM = 10;
int n = len(f);
assert(n < LIM);
// (-1)^{i-j} binom(i,j)
static vvc<int> C;
if (C.empty()) {
C.assign(LIM, vc<int>(LIM));
C[0][0] = 1;
FOR(n, 1, LIM) FOR(k, n + 1) {
C[n][k] += C[n - 1][k];
if (k) C[n][k] += C[n - 1][k - 1];
}
FOR(n, LIM) FOR(k, n + 1) if ((n + k) % 2) C[n][k] = -C[n][k];
}
// f(x) = sum a_i binom(x,i)
vc<T> a(n);
FOR(i, n) FOR(j, i + 1) { a[i] += f[j] * C[i][j]; }
T res = 0;
T b = 1;
FOR(i, n) {
res += a[i] * b;
b = b * (c - i) / (1 + i);
}
return res;
}
// Input: f(0), ..., f(n-1) and c, m
// Return: f(c), f(c+1), ..., f(c+m-1)
// Complexity: M(n, n + m)
template <typename mint>
vc<mint> lagrange_interpolate_iota(vc<mint> &f, mint c, int m) {
if (m <= 60) {
vc<mint> ANS(m);
FOR(i, m) ANS[i] = lagrange_interpolate_iota(f, c + mint(i));
return ANS;
}
ll n = len(f);
auto a = f;
FOR(i, n) {
a[i] = a[i] * fact_inv<mint>(i) * fact_inv<mint>(n - 1 - i);
if ((n - 1 - i) & 1) a[i] = -a[i];
}
// x = c, c+1, ... に対して a0/x + a1/(x-1) + ... を求めておく
vc<mint> b(n + m - 1);
FOR(i, n + m - 1) b[i] = mint(1) / (c + mint(i - n + 1));
a = convolution(a, b);
Sliding_Window_Aggregation<Monoid_Mul<mint>> swag;
vc<mint> ANS(m);
ll L = 0, R = 0;
FOR(i, m) {
while (L < i) { swag.pop(), ++L; }
while (R - L < n) { swag.push(c + mint((R++) - n + 1)); }
auto coef = swag.prod();
if (coef == 0) {
ANS[i] = f[(c + i).val];
} else {
ANS[i] = a[i + n - 1] * coef;
}
}
return ANS;
}
#line 5 "main.cpp"
using mint = modint998;
void solve() {
LL(N, K);
using T = array<int, 3>;
vc<T> point(N);
FOR(i, N) FOR(j, 3) read(point[i][j]);
// ax+by+cz+d>=0
using T4 = tuple<int, int, int, ll>;
auto eval = [&](T4 f, T p) -> ll {
auto [a, b, c, d] = f;
return a * p[0] + b * p[1] + c * p[2] + d;
};
vc<T4> plane;
FOR(k, N) FOR(j, k) FOR(i, j) {
T A, B;
FOR(p, 3) A[p] = point[j][p] - point[i][p];
FOR(p, 3) B[p] = point[k][p] - point[i][p];
T C;
C[0] = A[1] * B[2] - A[2] * B[1];
C[1] = A[2] * B[0] - A[0] * B[2];
C[2] = A[0] * B[1] - A[1] * B[0];
ll a = C[0], b = C[1], c = C[2];
if (a == 0 && b == 0 && c == 0) continue;
ll d = a * point[i][0] + b * point[i][1] + c * point[i][2];
d = -d;
T4 f = {a, b, c, d};
vi F(N);
FOR(i, N) { F[i] = eval(f, point[i]); };
assert(F[i] == 0 && F[j] == 0 && F[k] == 0);
if (MIN(F) < 0) {
f = {-a, -b, -c, -d};
for (auto&& x: F) x = -x;
}
if (MIN(F) >= 0) { plane.eb(f); }
}
for (auto&& [a, b, c, d]: plane) {
ll g = 0;
g = gcd(g, a);
g = gcd(g, b);
g = gcd(g, c);
g = gcd(g, d);
a /= g, b /= g, c /= g, d /= g;
}
UNIQUE(plane);
assert(len(plane) <= 1000);
auto solve = [&](ll k) -> mint {
ll lo = -200, hi = 200;
lo *= k, hi *= k;
ll ANS = 0;
FOR(x, lo, hi + 1) FOR(y, lo, hi + 1) {
// a(x/k)+b(y/k)+c(z/k)+d>=0 が必要
// ax+by+cz+dk>=0 が必要
ll mi = lo, ma = hi;
for (auto&& [a, b, c, d]: plane) {
if (mi > ma) break;
// cz>=rhs
ll rhs = a * x + b * y + d * k;
rhs = -rhs;
if (c == 0) {
if (rhs <= 0) continue;
mi = hi, ma = lo;
continue;
}
if (c > 0) {
chmax(mi, ceil(rhs, c));
} else {
// -cz<=-rhs
chmin(ma, floor(-rhs, -c));
}
}
if (mi <= ma) ANS += ma - mi + 1;
}
return ANS;
};
vc<mint> f(4);
/*
FOR(i, 4) f[i] = solve(1 + i);
mint ANS = lagrange_interpolate_iota<mint>(f, K - 1);
*/
FOR(i, 4) f[i] = solve(i);
mint ANS = lagrange_interpolate_iota<mint>(f, K);
print(ANS);
}
signed main() {
solve();
return 0;
}
詳細信息
Test #1:
score: 100
Accepted
time: 49ms
memory: 3556kb
input:
4 2 0 0 0 1 0 0 0 1 0 0 0 1
output:
10
result:
ok 1 number(s): "10"
Test #2:
score: 0
Accepted
time: 47ms
memory: 3544kb
input:
4 10000 0 0 0 1 0 0 0 1 0 0 0 1
output:
59878050
result:
ok 1 number(s): "59878050"
Test #3:
score: 0
Accepted
time: 86ms
memory: 3492kb
input:
8 314159265358979 5 -3 -3 -5 -3 -3 0 5 -3 0 0 10 4 2 6 -4 2 6 0 -5 6 0 0 -5
output:
152811018
result:
ok 1 number(s): "152811018"
Test #4:
score: 0
Accepted
time: 47ms
memory: 3648kb
input:
100 1 0 0 77 0 0 -195 0 0 -194 0 0 -112 0 0 -192 0 0 62 0 0 73 0 0 188 0 0 -150 0 0 -26 0 0 -164 0 0 -142 0 0 -90 200 1 0 0 0 50 0 0 111 0 0 -133 0 0 91 0 0 -70 0 0 46 0 0 175 -200 -67 0 0 0 128 0 0 170 0 0 76 0 0 -28 0 0 47 0 0 -196 0 0 45 0 0 -136 0 0 96 0 0 24 0 0 -29 0 0 -141 0 0 -84 0 0 -99 0 0...
output:
882531
result:
ok 1 number(s): "882531"
Test #5:
score: 0
Accepted
time: 70ms
memory: 3612kb
input:
82 333333333 98 99 168 -106 -105 -172 113 114 193 -13 -12 -17 -115 -114 -187 71 72 123 -70 -69 -112 95 96 163 -85 -84 -137 -28 -27 -42 -31 -30 -47 -200 -67 0 -121 -120 -197 -52 -51 -82 -112 -111 -182 110 111 188 44 45 78 86 87 148 104 105 178 -73 -72 -117 47 48 83 62 63 108 -103 -102 -167 56 57 98 1...
output:
767480931
result:
ok 1 number(s): "767480931"
Test #6:
score: 0
Accepted
time: 562ms
memory: 3348kb
input:
100 1 -63 -39 51 -36 -104 70 9 -77 34 115 -153 19 -161 141 10 157 -149 -4 -82 -92 87 14 114 -64 -176 -68 122 -7 -179 93 -182 200 -9 173 97 -135 0 -1 200 -83 -189 136 117 69 -93 -3 -113 58 183 -179 -2 -52 -184 118 -107 89 9 -24 -48 36 -111 87 12 -143 -173 158 -176 -78 127 -96 162 -33 147 -111 -18 -92...
output:
9771107
result:
ok 1 number(s): "9771107"
Test #7:
score: 0
Accepted
time: 192ms
memory: 9472kb
input:
100 1159111449 82 82 90 181 181 -85 70 70 -20 1 1 0 190 190 56 -83 -83 40 -89 -89 39 136 136 146 -195 -195 47 50 50 -99 -101 -101 -161 162 162 146 23 23 152 181 181 -91 -73 -73 -5 -105 -105 6 155 155 -136 152 152 -190 -33 -33 -137 55 55 41 3 3 -199 -168 -168 -177 -111 -111 115 171 171 8 131 131 123 ...
output:
681451260
result:
ok 1 number(s): "681451260"
Test #8:
score: 0
Accepted
time: 64ms
memory: 3568kb
input:
8 1 200 200 200 -200 -200 -200 200 -200 -200 -200 200 200 -200 200 -200 200 200 -200 200 -200 200 -200 -200 200
output:
64481201
result:
ok 1 number(s): "64481201"
Test #9:
score: 0
Accepted
time: 68ms
memory: 3540kb
input:
8 10 200 200 200 -200 200 200 -200 -200 200 200 200 -200 -200 -200 -200 200 -200 -200 -200 200 -200 200 -200 200
output:
160373409
result:
ok 1 number(s): "160373409"
Test #10:
score: 0
Accepted
time: 68ms
memory: 3444kb
input:
8 1234567890123 -200 -200 200 -200 200 200 -200 200 -200 -200 -200 -200 200 -200 200 200 -200 -200 200 200 200 200 200 -200
output:
868669244
result:
ok 1 number(s): "868669244"
Test #11:
score: 0
Accepted
time: 238ms
memory: 3400kb
input:
24 1 200 200 140 200 -140 200 140 200 -200 -140 -200 200 -200 200 140 -200 200 -140 -200 140 200 200 140 -200 200 -140 -200 200 200 -140 -200 -200 140 -200 -140 -200 -200 -200 -140 -200 140 -200 -140 200 200 140 -200 200 200 -200 -140 -200 -140 200 200 140 200 200 -200 140 140 -200 -200 140 200 200 ...
output:
64178641
result:
ok 1 number(s): "64178641"
Test #12:
score: 0
Accepted
time: 237ms
memory: 3568kb
input:
24 10 -200 140 -200 200 -140 200 200 140 200 -200 -140 -200 140 -200 -200 200 200 140 -200 -200 -140 -200 200 140 200 -140 -200 -200 -200 140 -140 200 -200 140 -200 200 200 -200 -140 -200 -140 200 -140 -200 -200 -200 200 -140 200 -200 140 200 200 -140 140 200 -200 -140 200 200 -140 -200 200 200 140 ...
output:
869176162
result:
ok 1 number(s): "869176162"
Test #13:
score: 0
Accepted
time: 239ms
memory: 3596kb
input:
24 1234567890123 -200 -140 -200 140 -200 -200 140 200 -200 200 -140 200 -200 -140 200 200 140 200 -140 200 -200 -200 -200 -140 200 200 140 -200 140 -200 -140 200 200 -140 -200 -200 200 -200 140 -200 -200 140 200 -140 -200 140 -200 200 200 140 -200 200 200 -140 200 -200 -140 -140 -200 200 -200 140 20...
output:
908630290
result:
ok 1 number(s): "908630290"
Test #14:
score: 0
Accepted
time: 2506ms
memory: 3504kb
input:
100 1 11 200 0 -197 36 0 -199 17 0 -76 -185 0 136 -147 0 -194 -50 0 140 143 0 0 0 -200 -5 200 0 -180 -88 0 -21 199 0 -99 -174 0 -186 74 0 116 -163 0 153 128 0 118 -161 0 -68 188 0 -200 -1 0 -194 47 0 -196 -40 0 -185 76 0 196 41 0 146 137 0 99 174 0 -124 -157 0 121 -159 0 -200 9 0 -59 191 0 -83 182 0...
output:
16722291
result:
ok 1 number(s): "16722291"
Test #15:
score: 0
Accepted
time: 2380ms
memory: 3520kb
input:
100 3 -87 180 0 -163 116 0 -185 -76 0 -200 0 0 200 13 0 189 66 0 -128 -153 0 -192 57 0 44 195 0 167 110 0 -116 -163 0 47 194 0 -86 -181 0 92 -178 0 -53 -193 0 66 189 0 -92 -178 0 -176 96 0 191 -60 0 197 32 0 -78 -184 0 -14 -200 0 -179 -89 0 109 168 0 177 -94 0 176 -95 0 94 -176 0 70 187 0 128 153 0 ...
output:
450766066
result:
ok 1 number(s): "450766066"
Test #16:
score: 0
Accepted
time: 2495ms
memory: 3588kb
input:
100 784433716 -103 172 0 -154 128 0 129 -153 0 84 -181 0 -7 200 0 138 -145 0 -97 -175 0 196 -38 0 -148 -135 0 -197 -37 0 141 142 0 128 -154 0 -164 114 0 106 -169 0 -151 131 0 -122 -158 0 170 105 0 61 -191 0 -192 -58 0 197 -33 0 -170 -105 0 109 -167 0 -181 85 0 166 111 0 -44 -195 0 0 0 -200 49 -194 0...
output:
631042395
result:
ok 1 number(s): "631042395"
Test #17:
score: 0
Accepted
time: 437ms
memory: 3444kb
input:
20 1 94 -145 -152 38 -114 138 186 -113 -75 154 -91 -178 191 173 -24 174 23 -128 126 -60 -17 -5 182 -3 -20 -71 157 197 51 68 41 117 -190 184 32 -152 21 -112 158 -14 110 172 24 -9 31 -13 -93 -192 -108 104 179 17 86 -76 107 -72 53 99 -19 60
output:
16547736
result:
ok 1 number(s): "16547736"
Test #18:
score: 0
Accepted
time: 1241ms
memory: 3500kb
input:
93 1 -64 -152 107 92 128 -174 170 56 177 137 -113 -41 -37 -24 -185 185 162 -187 182 35 79 -71 73 -114 126 -117 -44 -160 121 103 -98 163 59 141 77 130 -96 -114 45 130 152 -190 164 -71 188 -65 2 -86 80 16 -24 -104 -118 -131 123 -165 -195 118 26 164 -169 145 1 -147 -129 -106 -137 -85 -192 107 182 111 -...
output:
41981036
result:
ok 1 number(s): "41981036"
Test #19:
score: 0
Accepted
time: 906ms
memory: 3528kb
input:
62 1 -8 164 -123 -146 11 -34 176 151 -132 -26 -81 39 71 174 -83 -111 29 90 85 153 28 156 -174 0 144 -115 -124 -96 -31 -65 162 128 -118 -9 152 -149 -191 -87 -107 -161 84 200 181 -4 -59 -116 -70 71 -68 -141 108 4 -2 -13 96 155 -188 8 144 -39 -90 -20 -66 -69 -197 -156 136 -36 -14 13 -150 -82 71 91 -119...
output:
30784242
result:
ok 1 number(s): "30784242"
Test #20:
score: 0
Accepted
time: 657ms
memory: 3404kb
input:
45 1 104 177 -54 112 168 192 3 -135 51 -149 35 -105 156 -97 25 161 22 -106 113 -120 -75 71 144 144 -188 -36 110 137 63 -137 43 -81 169 183 184 178 -65 183 -148 185 -15 -196 -164 -154 10 67 -178 188 -81 17 -126 164 97 -87 157 156 104 19 33 146 172 169 121 33 146 -141 166 -20 9 158 116 163 -144 -177 -...
output:
34262460
result:
ok 1 number(s): "34262460"
Test #21:
score: 0
Accepted
time: 492ms
memory: 3572kb
input:
26 1 -19 77 -129 71 57 106 -30 35 54 68 86 109 107 -88 -14 -159 149 178 -39 161 88 -176 -24 -15 171 -89 -90 97 -88 69 188 9 -14 -184 65 -176 77 -145 -98 -5 14 -99 94 158 -192 93 138 175 -142 -68 -29 66 -14 -49 196 130 -14 -40 -13 138 169 41 54 149 46 -122 -3 -156 140 -4 17 26 -90 106 146 -107 -114 26
output:
22630372
result:
ok 1 number(s): "22630372"
Test #22:
score: 0
Accepted
time: 1064ms
memory: 3412kb
input:
83 1 150 77 20 -184 -196 23 -128 189 119 194 177 110 -125 -76 -165 11 165 -108 -34 28 100 78 30 23 83 -60 61 20 -15 101 -199 43 -23 95 -18 197 45 -150 104 -53 -10 -53 184 101 -11 -15 125 136 127 -180 29 -14 -33 -150 -73 15 -97 123 62 25 -110 44 -75 99 -58 -32 -57 -85 95 91 -90 12 105 -11 106 172 -18...
output:
44429135
result:
ok 1 number(s): "44429135"
Test #23:
score: 0
Accepted
time: 781ms
memory: 3512kb
input:
37 1 86 -96 195 -92 -11 -166 40 -58 145 -132 -123 64 -196 39 -52 -199 36 -59 41 119 171 131 170 146 -70 12 160 -48 193 -152 57 33 97 -75 -48 -104 -17 36 170 -20 133 9 171 100 44 119 110 -105 -44 -111 -172 43 154 -96 181 80 157 -180 98 -103 -90 -130 -110 -84 173 41 189 -139 55 -144 107 -142 -114 -179...
output:
28728439
result:
ok 1 number(s): "28728439"
Test #24:
score: 0
Accepted
time: 980ms
memory: 3548kb
input:
58 1 -45 174 -64 128 -186 -75 -82 -108 23 -88 -5 17 149 191 -18 122 133 150 -47 -64 100 -2 113 -82 -157 -94 55 194 -56 -61 -117 -83 109 -83 43 -26 107 -24 17 141 -35 -12 53 199 188 68 -145 113 15 -73 -188 164 -56 -171 -46 149 43 2 -153 29 25 -104 35 57 -16 60 -143 -127 -13 78 -143 42 148 -139 187 -1...
output:
37363387
result:
ok 1 number(s): "37363387"
Test #25:
score: 0
Accepted
time: 622ms
memory: 3588kb
input:
42 1 105 -190 -22 174 49 89 -42 163 -189 -61 62 81 190 134 20 -147 -43 117 -95 -104 133 -103 -19 47 159 48 -79 26 -97 -58 -192 138 -118 1 18 14 151 79 -21 -188 -135 -132 151 -164 -3 196 2 11 -62 46 98 135 -29 182 -85 102 -170 -161 -85 105 2 -49 101 -132 40 -133 73 58 79 13 -78 134 -5 -196 186 26 85 ...
output:
33396223
result:
ok 1 number(s): "33396223"
Test #26:
score: 0
Accepted
time: 889ms
memory: 3496kb
input:
50 1 -102 -104 -195 95 81 -157 -119 17 -123 16 -122 -169 147 78 152 48 80 125 -45 -150 -22 111 -85 124 14 -35 -34 -195 9 -128 197 -4 -64 24 -118 100 195 -82 102 50 -132 -104 -100 -95 142 -44 56 176 170 -177 -154 73 109 -158 -143 -184 -178 -160 -1 155 115 -143 107 -98 33 -157 190 -21 62 107 -48 -41 -...
output:
33656374
result:
ok 1 number(s): "33656374"
Test #27:
score: 0
Accepted
time: 606ms
memory: 3488kb
input:
34 1 -166 -133 -99 -128 133 0 -81 193 24 46 18 143 144 94 -167 -9 146 17 -73 52 15 116 132 14 1 -179 139 -194 169 -183 -63 191 10 -90 -50 -121 -96 -170 -197 181 149 182 -180 90 -30 194 -114 -17 -109 146 104 150 -109 -143 56 166 -142 130 123 -8 -50 178 -108 -27 -161 -107 -199 -42 139 78 22 -104 -11 -...
output:
35731863
result:
ok 1 number(s): "35731863"
Test #28:
score: 0
Accepted
time: 740ms
memory: 3384kb
input:
57 1 -93 -132 -143 -33 159 -194 -123 25 -143 -140 -85 74 69 -191 140 57 74 -179 -145 84 177 -73 -191 175 141 149 -134 -36 22 -130 -87 67 133 6 -59 -41 82 -34 -137 -10 -4 4 -194 -185 -143 -60 57 -104 -193 4 -118 -52 -179 33 -85 -87 -38 -126 -100 -79 161 161 -186 24 -126 91 152 -22 -24 -24 -32 138 -19...
output:
42104731
result:
ok 1 number(s): "42104731"
Test #29:
score: 0
Accepted
time: 79ms
memory: 3500kb
input:
5 1 25 -2 20 100 129 -140 -37 133 -181 7 -92 -114 22 116 -82
output:
951995
result:
ok 1 number(s): "951995"
Test #30:
score: 0
Accepted
time: 89ms
memory: 3416kb
input:
5 147 -64 98 50 -143 10 -118 131 -79 62 -59 138 -149 -142 -7 196
output:
884272932
result:
ok 1 number(s): "884272932"
Test #31:
score: 0
Accepted
time: 79ms
memory: 3444kb
input:
5 271828182845 60 -181 -110 -75 196 -71 55 9 -58 -74 -48 -76 91 -177 128
output:
846002797
result:
ok 1 number(s): "846002797"
Test #32:
score: 0
Accepted
time: 3571ms
memory: 3568kb
input:
100 1 193 -53 0 96 -132 115 -97 154 -82 173 75 67 -44 91 173 -63 51 -183 -142 99 101 18 -199 -5 -35 181 77 -44 -63 184 -66 -123 -143 138 140 40 0 82 -182 -100 -172 20 142 139 -24 -187 1 -71 131 -145 45 114 84 -141 186 1 -74 132 -7 -150 57 102 -162 -131 -88 123 -92 31 175 162 114 25 152 -54 -119 -10 ...
output:
29842680
result:
ok 1 number(s): "29842680"
Test #33:
score: 0
Accepted
time: 3618ms
memory: 3556kb
input:
100 2 -68 44 183 -15 -129 152 -132 143 48 -187 25 -65 116 -88 -138 157 46 -115 77 18 -184 24 53 191 -135 143 -36 161 -96 71 -48 178 78 -3 -59 191 133 -58 -137 -17 -1 -199 25 -197 -23 47 -91 172 6 155 -126 38 107 -164 187 69 -17 23 189 -62 111 -150 74 5 136 -147 -112 7 -166 -61 67 -178 157 -119 -33 -...
output:
237639433
result:
ok 1 number(s): "237639433"
Test #34:
score: 0
Accepted
time: 3379ms
memory: 3420kb
input:
100 36 164 -35 109 -181 -61 60 141 61 -128 -117 138 86 65 -74 174 -125 72 139 -183 -60 -53 -171 6 104 144 117 74 -166 -20 -110 -159 -113 -46 -159 -90 -81 79 -65 172 -43 -95 -171 76 91 161 -178 29 86 -130 13 -151 186 26 -70 -165 -105 42 -108 5 -168 -176 -84 -43 77 -79 -167 -171 90 52 39 132 -145 -82 ...
output:
133126869
result:
ok 1 number(s): "133126869"
Test #35:
score: 0
Accepted
time: 3475ms
memory: 3460kb
input:
100 899000570 -33 195 29 41 -174 89 173 -52 86 107 149 -79 -194 48 -7 179 86 26 125 -85 -130 -162 110 -41 37 -191 -47 -64 -166 93 88 88 -157 179 67 59 -146 119 -66 -89 168 -63 -73 147 -114 -146 -116 -72 -129 140 -60 160 -96 -70 -93 15 176 38 71 -183 -166 106 -37 31 110 -164 -105 106 133 83 -76 166 -...
output:
642235468
result:
ok 1 number(s): "642235468"
Test #36:
score: 0
Accepted
time: 3656ms
memory: 3572kb
input:
100 527256954420915 -100 110 -134 -60 -147 -122 -18 -146 -135 -114 103 128 -38 0 196 157 106 63 79 150 -106 -8 -174 99 -196 -8 40 76 -162 89 47 152 -122 83 -102 150 -36 -79 -180 -75 120 -141 23 -196 -32 -144 114 79 -190 -61 -13 156 101 74 -133 -19 -148 -32 -89 176 -157 108 -61 162 -96 69 175 -48 83 ...
output:
828026607
result:
ok 1 number(s): "828026607"
Test #37:
score: 0
Accepted
time: 1417ms
memory: 3568kb
input:
100 2 -113 -117 -33 5 -174 -192 -153 23 -105 -92 178 -100 -43 -70 -94 -29 111 35 3 -164 155 -75 163 117 145 -140 102 -199 150 8 2 -63 -56 -137 -185 -56 165 -41 -88 -20 -94 -178 -47 -60 184 159 17 -148 -108 186 169 3 -51 81 -2 -45 -150 -61 -102 119 -198 -187 124 34 -179 -123 149 -132 -123 177 -147 -5...
output:
354649638
result:
ok 1 number(s): "354649638"
Test #38:
score: 0
Accepted
time: 1121ms
memory: 3416kb
input:
100 5 65 -152 -103 -195 110 10 -145 -6 106 105 -20 29 -198 128 57 -89 79 -110 8 159 -6 194 132 -107 -111 88 -54 -74 -171 183 -119 -166 127 -188 33 -151 140 19 -38 -47 193 170 57 -132 16 -105 96 107 -105 -163 -15 55 -165 113 158 -111 -170 51 -92 195 185 93 110 145 149 92 47 -119 149 118 -196 65 -172 ...
output:
580842281
result:
ok 1 number(s): "580842281"
Test #39:
score: 0
Accepted
time: 1035ms
memory: 3416kb
input:
100 145361171 112 53 144 61 -115 159 -148 163 22 23 -70 91 -116 -39 142 -7 -132 35 -167 162 -103 47 -169 -18 -180 -103 -116 -163 -62 70 54 79 145 76 -190 -118 10 -39 -179 69 187 78 31 139 -106 126 38 -125 -80 -101 95 151 -32 -9 -100 167 -44 -84 -82 132 59 -188 -106 45 68 165 150 26 -28 137 164 -91 -...
output:
139549314
result:
ok 1 number(s): "139549314"
Test #40:
score: 0
Accepted
time: 1221ms
memory: 3348kb
input:
100 52502708246019 12 97 -77 195 163 71 160 64 110 -50 -139 99 -142 -28 -151 -91 89 -60 69 92 100 -195 31 -26 -78 -4 -110 20 12 153 148 -153 -158 144 -37 -3 188 57 164 13 -64 -39 160 177 -67 -6 -126 -189 44 -14 75 -23 96 122 133 179 -83 -161 -181 -111 156 100 -59 165 15 -29 -18 74 180 -46 126 101 63...
output:
722223460
result:
ok 1 number(s): "722223460"