QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#107881 | #6302. Map | maspy | AC ✓ | 7ms | 3872kb | C++23 | 18.4kb | 2023-05-23 02:44:21 | 2023-05-23 02:44:24 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
assert(!que.empty());
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
assert(!que.empty());
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>
namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
template <class T>
static auto check(T &&x) -> decltype(x.write(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};
struct has_read_impl {
template <class T>
static auto check(T &&x) -> decltype(x.read(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};
struct Scanner {
FILE *fp;
char line[(1 << 15) + 1];
size_t st = 0, ed = 0;
void reread() {
memmove(line, line + st, ed - st);
ed -= st;
st = 0;
ed += fread(line + ed, 1, (1 << 15) - ed, fp);
line[ed] = '\0';
}
bool succ() {
while (true) {
if (st == ed) {
reread();
if (st == ed) return false;
}
while (st != ed && isspace(line[st])) st++;
if (st != ed) break;
}
if (ed - st <= 50) {
bool sep = false;
for (size_t i = st; i < ed; i++) {
if (isspace(line[i])) {
sep = true;
break;
}
}
if (!sep) reread();
}
return true;
}
template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
while (true) {
size_t sz = 0;
while (st + sz < ed && !isspace(line[st + sz])) sz++;
ref.append(line + st, sz);
st += sz;
if (!sz || st != ed) break;
reread();
}
return true;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
ref = T(0);
while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
if (neg) ref = -ref;
return true;
}
template <typename T,
typename enable_if<has_read<T>::value>::type * = nullptr>
inline bool read_single(T &x) {
x.read();
return true;
}
bool read_single(double &ref) {
string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
bool read_single(char &ref) {
string s;
if (!read_single(s) || s.size() != 1) return false;
ref = s[0];
return true;
}
template <class T>
bool read_single(vector<T> &ref) {
for (auto &d: ref) {
if (!read_single(d)) return false;
}
return true;
}
template <class T, class U>
bool read_single(pair<T, U> &p) {
return (read_single(p.first) && read_single(p.second));
}
template <size_t N = 0, typename T>
void read_single_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
read_single(x);
read_single_tuple<N + 1>(t);
}
}
template <class... T>
bool read_single(tuple<T...> &tpl) {
read_single_tuple(tpl);
return true;
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
Scanner(FILE *fp) : fp(fp) {}
};
struct Printer {
Printer(FILE *_fp) : fp(_fp) {}
~Printer() { flush(); }
static constexpr size_t SIZE = 1 << 15;
FILE *fp;
char line[SIZE], small[50];
size_t pos = 0;
void flush() {
fwrite(line, 1, pos, fp);
pos = 0;
}
void write(const char val) {
if (pos == SIZE) flush();
line[pos++] = val;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void write(T val) {
if (pos > (1 << 15) - 50) flush();
if (val == 0) {
write('0');
return;
}
if (val < 0) {
write('-');
val = -val; // todo min
}
size_t len = 0;
while (val) {
small[len++] = char(0x30 | (val % 10));
val /= 10;
}
for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
pos += len;
}
void write(const string s) {
for (char c: s) write(c);
}
void write(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) write(s[i]);
}
void write(const double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
void write(const long double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
template <typename T,
typename enable_if<has_write<T>::value>::type * = nullptr>
inline void write(T x) {
x.write();
}
template <class T>
void write(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
template <class T, class U>
void write(const pair<T, U> val) {
write(val.first);
write(' ');
write(val.second);
}
template <size_t N = 0, typename T>
void write_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { write(' '); }
const auto x = std::get<N>(t);
write(x);
write_tuple<N + 1>(t);
}
}
template <class... T>
bool write(tuple<T...> tpl) {
write_tuple(tpl);
return true;
}
template <class T, size_t S>
void write(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
void write(i128 val) {
string s;
bool negative = 0;
if (val < 0) {
negative = 1;
val = -val;
}
while (val) {
s += '0' + int(val % 10);
val /= 10;
}
if (negative) s += "-";
reverse(all(s));
if (len(s) == 0) s = "0";
write(s);
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
scanner.read(head);
read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/geo/base.hpp"
template <typename T>
struct Point {
T x, y;
Point() = default;
template <typename A, typename B>
Point(A x, B y) : x(x), y(y) {}
template <typename A, typename B>
Point(pair<A, B> p) : x(p.fi), y(p.se) {}
Point operator+(Point p) const { return {x + p.x, y + p.y}; }
Point operator-(Point p) const { return {x - p.x, y - p.y}; }
bool operator==(Point p) const { return x == p.x && y == p.y; }
Point operator-() const { return {-x, -y}; }
bool operator<(Point p) const {
if (x != p.x) return x < p.x;
return y < p.y;
}
T dot(Point other) { return x * other.x + y * other.y; }
T det(Point other) { return x * other.y - y * other.x; }
void read() { fastio::read(x), fastio::read(y); }
void write() { fastio::printer.write(pair<T, T>({x, y})); }
};
// A -> B -> C と進むときに、左に曲がるならば +1、右に曲がるならば -1
template <typename T>
int ccw(Point<T> A, Point<T> B, Point<T> C) {
T x = (B - A).det(C - A);
if (x > 0) return 1;
if (x < 0) return -1;
return 0;
}
template <typename REAL, typename T>
REAL dist(Point<T> A, Point<T> B) {
A = A - B;
T p = A.dot(A);
return sqrt(REAL(p));
}
template <typename T>
struct Line {
T a, b, c;
Line(T a, T b, T c) : a(a), b(b), c(c) {}
Line(Point<T> A, Point<T> B) {
a = A.y - B.y, b = B.x - A.x, c = A.x * B.y - A.y * B.x;
}
Line(T x1, T y1, T x2, T y2) : Line(Point<T>(x1, y1), Point<T>(x2, y2)) {}
template <typename U>
U eval(Point<U> P) {
return a * P.x + b * P.y + c;
}
template <typename U>
T eval(U x, U y) {
return a * x + b * y + c;
}
bool is_parallel(Line other) { return a * other.b - b * other.a == 0; }
bool is_orthogonal(Line other) { return a * other.a + b * other.b == 0; }
};
template <typename T>
struct Segment {
Point<T> A, B;
Segment(Point<T> A, Point<T> B) : A(A), B(B) {}
Segment(T x1, T y1, T x2, T y2)
: Segment(Point<T>(x1, y1), Point<T>(x2, y2)) {}
template <enable_if_t<is_integral<T>::value, int> = 0>
bool contain(Point<T> C) {
T det = (C - A).det(B - A);
if (det != 0) return 0;
return (C - A).dot(B - A) >= 0 && (C - B).dot(A - B) >= 0;
}
Line<T> to_Line() { return Line(A, B); }
};
template <typename REAL>
struct Circle {
Point<REAL> O;
REAL r;
Circle(Point<REAL> O, REAL r) : O(O), r(r) {}
Circle(REAL x, REAL y, REAL r) : O(x, y), r(r) {}
template <typename T>
bool contain(Point<T> p) {
REAL dx = p.x - O.x, dy = p.y - O.y;
return dx * dx + dy * dy <= r * r;
}
};
template <typename T>
struct Polygon {
vc<Point<T>> points;
T a;
template <typename A, typename B>
Polygon(vc<pair<A, B>> pairs) {
for (auto&& [a, b]: pairs) points.eb(Point<T>(a, b));
build();
}
Polygon(vc<Point<T>> points) : points(points) { build(); }
int size() { return len(points); }
template <typename REAL>
REAL area() {
return a * 0.5;
}
template <enable_if_t<is_integral<T>::value, int> = 0>
T area_2() {
return a;
}
bool is_convex() {
FOR(j, len(points)) {
int i = (j == 0 ? len(points) - 1 : j - 1);
int k = (j == len(points) - 1 ? 0 : j + 1);
if ((points[j] - points[i]).det(points[k] - points[j]) < 0) return false;
}
return true;
}
private:
void build() {
a = 0;
FOR(i, len(points)) {
int j = (i + 1 == len(points) ? 0 : i + 1);
a += points[i].det(points[j]);
}
if (a < 0) {
a = -a;
reverse(all(points));
}
}
};
#line 4 "main.cpp"
using Re = double;
using P = Point<Re>;
void solve() {
VEC(P, R1, 4);
VEC(P, R2, 4);
P s, t;
read(s), read(t);
LL(K, N);
auto F12 = [&](P p) -> P {
P a = R1[1] - R1[0];
P b = R1[3] - R1[0];
p = p - R1[0];
// p = xa + yb
Re x = p.dot(a) / a.dot(a);
Re y = p.dot(b) / b.dot(b);
p.x = R2[0].x + x * (R2[1].x - R2[0].x) + y * (R2[3].x - R2[0].x);
p.y = R2[0].y + x * (R2[1].y - R2[0].y) + y * (R2[3].y - R2[0].y);
return p;
};
auto F21 = [&](P p) -> P {
P a = R2[1] - R2[0];
P b = R2[3] - R2[0];
p = p - R2[0];
// p = xa + yb
Re x = p.dot(a) / a.dot(a);
Re y = p.dot(b) / b.dot(b);
p.x = R1[0].x + x * (R1[1].x - R1[0].x) + y * (R1[3].x - R1[0].x);
p.y = R1[0].y + x * (R1[1].y - R1[0].y) + y * (R1[3].y - R1[0].y);
return p;
};
vc<P> A(N + N + 1);
A[N] = s;
FOR_R(i, N) A[i] = F12(A[i + 1]);
FOR(i, N, N + N) A[i + 1] = F21(A[i]);
vc<P> B(N + N + 1);
B[N] = t;
FOR_R(i, N) B[i] = F12(B[i + 1]);
FOR(i, N, N + N) B[i + 1] = F21(B[i]);
Re ANS = infty<Re>;
FOR(i, -N, N + N + 1) FOR(j, -N, N + N + 1) {
ll k = abs(i) + abs(j);
if (k > N) continue;
Re cost = 0;
cost += K * k;
cost += dist<Re, Re>(A[N + i], B[N + j]);
chmin(ANS, cost);
}
print(ANS);
}
signed main() {
INT(T);
FOR(T) solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 2ms
memory: 3836kb
input:
2 0 0 0 2 4 2 4 0 0 0 0 1 2 1 2 0 2 1 4 2 1 1 0 0 0 3 6 3 6 0 0 1 1 0 3 2 2 3 0 0 4 2 0 3
output:
1.000000000000000 1.227262335243029
result:
ok 2 numbers
Test #2:
score: 0
Accepted
time: 5ms
memory: 3608kb
input:
100 -133 -128 -109 -134 -85 -38 -109 -32 -95 -37 -100 -35 -108 -55 -103 -57 -119 -130 -112 -44 2 73 5 -100 5 -8 1 -8 1 -100 1 -60 1 -14 3 -14 3 -60 3 -84 1 -20 2 53 -58 -78 -66 -78 -66 -34 -58 -34 -58 -34 -66 -34 -66 -78 -58 -78 -63 -50 -63 -37 4 54 52 -148 116 -148 116 -52 52 -52 53 -103 53 -71 101...
output:
9.500657499741555 12.229731078922157 13.000000000000000 17.488532900375080 13.341664064126334 7.615773105863909 23.409399821439251 7.280109889280518 21.280037734083887 59.776022092579126 4.123105625617661 79.649231006959511 65.069193939989759 14.142135623730951 41.824615503479755 16.056245184896987 ...
result:
ok 100 numbers
Test #3:
score: 0
Accepted
time: 6ms
memory: 3688kb
input:
100 -173 -113 -120 -113 -120 -115 -173 -115 -173 -115 -120 -115 -120 -113 -173 -113 -162 -114 -152 -114 99 57 6 23 -75 4 -56 -77 25 -58 0 -58 -51 -69 -62 -18 -11 -7 -22 -56 -42 -25 19 27 -98 -115 -150 -147 -158 -134 -106 -102 -150 -147 -98 -115 -106 -102 -158 -134 -103 -111 -136 -134 25 50 136 -92 1...
output:
10.000000000000000 25.483637975584365 40.224370722237531 18.384776310850235 9.219544457292887 18.027756377319946 43.114063026280363 52.887044352349008 45.541190146942803 55.000999975001250 37.000000000000000 12.041594578792296 24.331050121192877 18.110770276274835 7.563262753279504 2.236067977499790...
result:
ok 100 numbers
Test #4:
score: 0
Accepted
time: 5ms
memory: 3588kb
input:
100 -12 -206 72 -188 135 -482 51 -500 19 -301 23 -301 23 -315 19 -315 88 -368 28 -248 14 87 -221 -566 -467 -566 -467 -565 -221 -565 -221 -566 -467 -566 -467 -565 -221 -565 -297 -566 -289 -566 274 18 -264 759 -339 609 -129 504 -54 654 -208 580 -208 655 -103 655 -103 580 -196 664 -211 596 8 64 -111 -3...
output:
34.246950475544253 8.000000000000000 45.926952286842969 135.118466539551889 131.973482184869255 40.349665953953490 15.321347728712500 77.772275035020499 66.738813035899369 8.000266654815924 116.806446031673104 12.588290015615986 170.785630266285750 131.962750429094399 8.738089975160305 17.4642491965...
result:
ok 100 numbers
Test #5:
score: 0
Accepted
time: 5ms
memory: 3812kb
input:
100 -235 -704 133 -704 133 -720 -235 -720 -224 -712 -40 -712 -40 -704 -224 -704 15 -711 76 -718 4 74 -467 574 -475 596 -123 724 -115 702 -274 662 -270 652 -430 588 -434 598 -458 588 -241 657 15 31 380 -3 532 -343 787 -229 635 111 503 -71 639 -163 708 -61 572 31 533 -189 613 -137 3 58 -460 -7 -488 -7...
output:
31.350081433008754 51.967632320937959 21.468697928146717 38.837932076467766 84.248187428308029 77.929455278476055 47.000000000000000 74.115493725912501 86.467104880421701 35.114099732158877 3.605551275463989 97.416631023660429 24.606056965764580 56.773359432723908 6.998534619414935 13.45362404707371...
result:
ok 100 numbers
Test #6:
score: 0
Accepted
time: 5ms
memory: 3788kb
input:
100 -1201 2822 -1197 2814 -3437 1694 -3441 1702 -3119 1860 -3117 1856 -1997 2416 -1999 2420 -1419 2709 -2491 2174 48 76 -2515 285 -2547 306 -1308 2194 -1276 2173 -2255 683 -2260 686 -2083 981 -2078 978 -1572 1753 -1392 2015 121 28 -1216 1209 -1498 -1141 -1598 -1129 -1316 1221 -1494 -823 -1494 -447 -...
output:
264.055863532879016 290.425700450936574 258.282400313066319 743.737184763542700 341.052781838823307 400.566683662432695 172.040799340956909 27.770894609837494 294.825880152081140 508.065910688872975 501.781825099315427 666.805068966935778 180.069431053691062 193.610433603150625 1507.002986062071386 ...
result:
ok 100 numbers
Test #7:
score: 0
Accepted
time: 5ms
memory: 3612kb
input:
100 1411 -2755 603 -3563 623 -3583 1431 -2775 716 -3477 1120 -3073 1110 -3063 706 -3467 1210 -2959 1339 -2830 2319 39 4528 -3417 4286 -4055 1908 -3153 2150 -2515 2094 -2892 2094 -3090 2832 -3090 2832 -2892 2257 -2993 4389 -3736 17 22 -180 -1673 -2172 -3665 -2164 -3673 -172 -1681 -284 -1792 -2027 -35...
output:
182.433549546129257 96.880923053928399 530.330085889910606 44.011362169330773 64.313365366181941 7.392893666126233 34.567810207462088 148.850160742992557 350.338135916148133 329.225162779821233 68.864765108872987 32.824383174612819 244.695729427384975 685.968837711980996 141.362747995939316 1601.789...
result:
ok 100 numbers
Test #8:
score: 0
Accepted
time: 3ms
memory: 3800kb
input:
100 11928 -18111 8928 -17411 11056 -8291 14056 -8991 11043 -10811 10793 -10111 12921 -9351 13171 -10051 10491 -14092 11923 -12413 10 92 11869 -4371 3539 5429 1299 3525 9629 -6275 8302 -3064 3647 2571 4935 3635 9590 -2000 2384 2680 3466 2644 181 91 4001 -10187 4001 -10897 9 -10897 9 -10187 838 -10629...
output:
87.479657002630546 977.209322820567536 94.486325059360709 307.006514588860171 1245.629559700635809 532.000000000000000 369.048777263927548 19.554024317231864 1509.000000000000000 275.094267211329623 4242.193351514708411 465.656251408810249 3478.304242060181878 1754.356007200362910 1804.4669275859330...
result:
ok 100 numbers
Test #9:
score: 0
Accepted
time: 2ms
memory: 3600kb
input:
100 10303 -4099 19487 -8131 19703 -7639 10519 -3607 18394 -7495 18842 -7271 18854 -7295 18406 -7519 15852 -6248 15950 -6389 38 10 13132 -3411 17416 3393 15634 4515 11350 -2289 13143 -873 15411 3411 16533 2817 14265 -1467 16515 2577 16017 1561 198 94 -5480 10872 -6297 11294 -11361 1490 -10544 1068 -1...
output:
84.574886489291558 999.689277678129997 6231.529667746114683 550.947886095035528 182.544124658605369 5374.296791209059847 825.725781096656874 1653.207429169170609 2777.109648537486009 166.653023806101686 1747.004579272761930 651.111357603290458 242.210006732269051 34.266895846221601 286.7908645685911...
result:
ok 100 numbers
Test #10:
score: 0
Accepted
time: 6ms
memory: 3596kb
input:
100 0 -30 84 12 126 -72 42 -114 0 -30 84 12 126 -72 42 -114 91 -41 100 -55 96 93 168 110 148 150 48 100 68 60 48 100 68 60 168 110 148 150 61 96 102 90 8 2 -123 129 -60 174 -15 111 -78 66 -15 111 -78 66 -123 129 -60 174 -44 115 -104 132 27 3 27 42 15 54 -75 -36 -63 -48 -63 -48 -75 -36 15 54 27 42 -4...
output:
16.643316977093239 41.436698710201320 39.206555615733706 11.180339887498949 49.729267036625423 26.925824035672520 50.931326312987373 10.294055820165386 117.885537705012823 8.602325267042627 48.466483264210538 21.095023109728988 24.038404810405297 16.000000000000000 48.548944375753422 26.061756859551...
result:
ok 100 numbers
Test #11:
score: 0
Accepted
time: 3ms
memory: 3872kb
input:
100 9725 6731 9725 11971 14965 11971 14965 6731 9725 6731 9725 11971 14965 11971 14965 6731 10293 11185 10445 9833 488 10 3833 -4831 6913 -4271 8443 -12686 5363 -13246 6913 -4271 3833 -4831 5363 -13246 8443 -12686 5209 -4960 7133 -6409 1 88 -5891 -6066 -8365 -6066 -8365 -8540 -5891 -8540 -8365 -6066...
output:
1360.517548582156223 2119.674780139698214 1638.601494195408577 144.699689011414250 1706.299211744528748 2671.668018298680636 1442.324859385013951 2909.931270666027103 5311.386353862802935 7894.844203655952697 2950.721437208195766 1405.197279587166804 8052.785977535972961 436.084854128184531 1910.190...
result:
ok 100 numbers
Test #12:
score: 0
Accepted
time: 7ms
memory: 3812kb
input:
100 1432065 -1359744 1432065 -1359796 610089 -1359796 610089 -1359744 610089 -1359744 610089 -1359796 1432065 -1359796 1432065 -1359744 1413145 -1359747 670086 -1359765 306 12 -630899 -570942 344981 -570942 344981 -567164 -630899 -567164 -630899 -567164 344981 -567164 344981 -570942 -630899 -570942 ...
output:
41383.003943812647776 344430.708764477050863 597464.947160122334026 57512.000021251275029 180112.504983949213056 254594.189465463656234 13301.834367630941415 246235.741341503860895 17086.953736696308624 168329.001188149384689 580568.278437601169571 120047.475965045188786 24722.575937794183119 252882...
result:
ok 100 numbers
Test #13:
score: 0
Accepted
time: 7ms
memory: 3596kb
input:
100 -240497 1168822 -365542 931192 504344 473443 629389 711073 226221 683190 167481 688085 185400 903113 244140 898218 -192129 1110656 34450 941656 2 25 1729381 25950 1512625 519672 1528369 526584 1745125 32862 1536820 492965 1580974 388601 1584302 390009 1540148 494373 1660204 207517 1601591 344571...
output:
33.523773639131214 126504.999518608878134 57518.293697333065211 318943.663702541671228 169769.250005668785889 1497.133893067331201 23459.324991965091613 853.347816095360486 28.351411845905108 7526.106524036477822 36705.816569039845490 575.015321674938605 4025.084882224849480 31458.023666467033763 31...
result:
ok 100 numbers
Test #14:
score: 0
Accepted
time: 5ms
memory: 3808kb
input:
100 -889209 606569 -191736 1436894 638589 739421 -58884 -90904 -58884 -90904 638589 739421 -191736 1436894 -889209 606569 -486300 891465 -464854 988546 79 18 -1226546 957048 -712144 1926170 -590407 1861553 -1104809 892431 -712144 1926170 -1226546 957048 -1104809 892431 -590407 1861553 -807239 146415...
output:
99421.584562910677050 404181.388824374240357 311311.528917577990796 271785.624537060444709 319158.191839094099123 77725.025543495052261 103690.241569289937615 33781.004277552201529 16708.608350188831537 262422.768227149092127 176381.843093329749536 159818.483940375299426 451836.634220813575666 29166...
result:
ok 100 numbers