QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#106997#6127. Kawa ExammaspyAC ✓1204ms43548kbC++2328.2kb2023-05-20 04:52:082023-05-20 04:52:10

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-05-20 04:52:10]
  • 评测
  • 测评结果:AC
  • 用时:1204ms
  • 内存:43548kb
  • [2023-05-20 04:52:08]
  • 提交

answer

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  assert(!que.empty());
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  assert(!que.empty());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.write(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};

struct has_read_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.read(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <typename T,
            typename enable_if<has_read<T>::value>::type * = nullptr>
  inline bool read_single(T &x) {
    x.read();
    return true;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <size_t N = 0, typename T>
  void read_single_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
      auto &x = std::get<N>(t);
      read_single(x);
      read_single_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool read_single(tuple<T...> &tpl) {
    read_single_tuple(tpl);
    return true;
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <typename T,
            typename enable_if<has_write<T>::value>::type * = nullptr>
  inline void write(T x) {
    x.write();
  }
  template <class T>
  void write(const vector<T> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <size_t N = 0, typename T>
  void write_tuple(const T t) {
    if constexpr (N < std::tuple_size<T>::value) {
      if constexpr (N > 0) { write(' '); }
      const auto x = std::get<N>(t);
      write(x);
      write_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool write(tuple<T...> tpl) {
    write_tuple(tpl);
    return true;
  }
  template <class T, size_t S>
  void write(const array<T, S> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if (val < 0) {
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if (negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "library/graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }
  constexpr bool is_directed() { return directed; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  // {G, es}
  pair<Graph<T, directed>, vc<int>> rearrange(vc<int> V) {
    int n = len(V);
    map<int, int> MP;
    FOR(i, n) MP[V[i]] = i;
    set<int> used;
    Graph<T, directed> G(n);
    vc<int> es;
    FOR(i, n) {
      for (auto&& e: (*this)[V[i]]) {
        if (used.count(e.id)) continue;
        int a = e.frm, b = e.to;
        if (MP.count(a) && MP.count(b)) {
          used.insert(e.id);
          G.add(MP[a], MP[b], e.cost);
          es.eb(e.id);
        }
      }
    }
    G.build();
    return {G, es};
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 2 "library/graph/two_edge_component.hpp"

// (成分数, 成分番号の vector)
template <typename GT>
pair<int, vc<int>> two_edge_component(GT& G) {
  assert(!G.is_directed());
  int N = G.N, M = G.M, n_comp = 0;
  vc<int> V, par(N, -2), dp(N), comp(N);
  V.reserve(N);
  vc<bool> used(M);
  auto dfs = [&](auto& dfs, int v) -> void {
    V.eb(v);
    for (auto&& e: G[v]) {
      if (used[e.id]) continue;
      if (par[e.to] != -2) dp[v]++, dp[e.to]--, used[e.id] = 1;
      if (par[e.to] == -2) {
        used[e.id] = 1;
        par[e.to] = v;
        dfs(dfs, e.to);
      }
    }
  };
  FOR(v, N) if (par[v] == -2) { par[v] = -1, dfs(dfs, v); }
  FOR_R(i, N) {
    if (par[V[i]] != -1) dp[par[V[i]]] += dp[V[i]];
  }
  for (auto&& v: V) comp[v] = (dp[v] == 0 ? n_comp++ : comp[par[v]]);
  return {n_comp, comp};
}
#line 1 "library/ds/counter.hpp"

template <int KEY_MAX, int CNT_MAX, bool BS = false>
struct Counter {
  static constexpr int thresh = (BS ? sqrt(CNT_MAX) : 0);
  int mx;
  int total;
  vc<int> freq;
  vc<int> freq_cnt;
  vc<bitset<KEY_MAX>> key; // freq -> key

  Counter()
      : mx(0), total(0), freq(KEY_MAX), freq_cnt(CNT_MAX + 1), key(thresh + 1) {
    freq_cnt[0] = KEY_MAX;
    key[0].set();
  }

  int size() { return total; }

  void insert(int k) {
    ++total;
    if (mx == freq[k]) ++mx;
    key[min(thresh, freq[k])][k] = 0;
    freq_cnt[freq[k]]--, freq[k]++, freq_cnt[freq[k]]++;
    key[min(thresh, freq[k])][k] = 1;
  }
  void add(int k) { insert(k); }

  void erase(int k) {
    --total;
    if (mx == freq[k] && freq_cnt[freq[k]] == 1) --mx;
    key[min(thresh, freq[k])][k] = 0;
    freq_cnt[freq[k]]--, freq[k]--, freq_cnt[freq[k]]++;
    key[min(thresh, freq[k])][k] = 1;
  }
  void remove(int k) { erase(k); }

  int operator[](int x) { return freq[x]; }

  int max_freq() { return mx; }
  int max_freq_key() {
    static_assert(BS);
    if (mx < thresh) return key[mx]._Find_first();
    bitset<KEY_MAX>& b = key[thresh];
    int p = b._Find_first();
    while (1) {
      if (freq[p] == mx) return p;
      p = b._Find_next(p);
    }
    assert(0);
    return -1;
  }
};
#line 2 "library/ds/unionfind/unionfind.hpp"

struct UnionFind {
  int n, n_comp;
  vc<int> dat; // par or (-size)
  UnionFind(int n = 0) { build(n); }

  void build(int m) {
    n = m, n_comp = m;
    dat.assign(n, -1);
  }

  void reset() { build(n); }

  int operator[](int x) {
    while (dat[x] >= 0) {
      int pp = dat[dat[x]];
      if (pp < 0) { return dat[x]; }
      x = dat[x] = pp;
    }
    return x;
  }

  ll size(int x) {
    assert(dat[x] < 0);
    return -dat[x];
  }

  bool merge(int x, int y) {
    x = (*this)[x], y = (*this)[y];
    if (x == y) return false;
    if (-dat[x] < -dat[y]) swap(x, y);
    dat[x] += dat[y], dat[y] = x, n_comp--;
    return true;
  }
};
#line 2 "library/graph/tree.hpp"

#line 4 "library/graph/tree.hpp"

// HLD euler tour をとっていろいろ。
// 木以外、非連結でも dfs 順序や親がとれる。
template <typename GT>
struct Tree {
  using Graph_type = GT;
  GT &G;
  using WT = typename GT::cost_type;
  int N;
  vector<int> LID, RID, head, V, parent, VtoE;
  vc<int> depth;
  vc<WT> depth_weighted;

  Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); }

  void build(int r = 0, bool hld = 1) {
    if (r == -1) return; // build を遅延したいとき
    N = G.N;
    LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);
    V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);
    depth.assign(N, -1), depth_weighted.assign(N, 0);
    assert(G.is_prepared());
    int t1 = 0;
    dfs_sz(r, -1, hld);
    dfs_hld(r, t1);
  }

  void dfs_sz(int v, int p, bool hld) {
    auto &sz = RID;
    parent[v] = p;
    depth[v] = (p == -1 ? 0 : depth[p] + 1);
    sz[v] = 1;
    int l = G.indptr[v], r = G.indptr[v + 1];
    auto &csr = G.csr_edges;
    // 使う辺があれば先頭にする
    for (int i = r - 2; i >= l; --i) {
      if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
    }
    int hld_sz = 0;
    for (int i = l; i < r; ++i) {
      auto e = csr[i];
      if (depth[e.to] != -1) continue;
      depth_weighted[e.to] = depth_weighted[v] + e.cost;
      VtoE[e.to] = e.id;
      dfs_sz(e.to, v, hld);
      sz[v] += sz[e.to];
      if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
    }
  }

  void dfs_hld(int v, int &times) {
    LID[v] = times++;
    RID[v] += LID[v];
    V[LID[v]] = v;
    bool heavy = true;
    for (auto &&e: G[v]) {
      if (depth[e.to] <= depth[v]) continue;
      head[e.to] = (heavy ? head[v] : e.to);
      heavy = false;
      dfs_hld(e.to, times);
    }
  }

  vc<int> heavy_path_at(int v) {
    vc<int> P = {v};
    while (1) {
      int a = P.back();
      for (auto &&e: G[a]) {
        if (e.to != parent[a] && head[e.to] == v) {
          P.eb(e.to);
          break;
        }
      }
      if (P.back() == a) break;
    }
    return P;
  }

  int e_to_v(int eid) {
    auto e = G.edges[eid];
    return (parent[e.frm] == e.to ? e.frm : e.to);
  }
  int v_to_e(int v) { return VtoE[v]; }

  int ELID(int v) { return 2 * LID[v] - depth[v]; }
  int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }

  /* k: 0-indexed */
  int LA(int v, int k) {
    assert(k <= depth[v]);
    while (1) {
      int u = head[v];
      if (LID[v] - k >= LID[u]) return V[LID[v] - k];
      k -= LID[v] - LID[u] + 1;
      v = parent[u];
    }
  }
  int la(int u, int v) { return LA(u, v); }

  int LCA(int u, int v) {
    for (;; v = parent[head[v]]) {
      if (LID[u] > LID[v]) swap(u, v);
      if (head[u] == head[v]) return u;
    }
  }
  // root を根とした場合の lca
  int LCA_root(int u, int v, int root) {
    return LCA(u, v) ^ LCA(u, root) ^ LCA(v, root);
  }
  int lca(int u, int v) { return LCA(u, v); }
  int lca_root(int u, int v, int root) { return LCA_root(u, v, root); }

  int subtree_size(int v, int root = -1) {
    if (root == -1) return RID[v] - LID[v];
    if (v == root) return N;
    int x = jump(v, root, 1);
    if (in_subtree(v, x)) return RID[v] - LID[v];
    return N - RID[x] + LID[x];
  }

  int dist(int a, int b) {
    int c = LCA(a, b);
    return depth[a] + depth[b] - 2 * depth[c];
  }

  WT dist_weighted(int a, int b) {
    int c = LCA(a, b);
    return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
  }

  // a is in b
  bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }

  int jump(int a, int b, ll k) {
    if (k == 1) {
      if (a == b) return -1;
      return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
    }
    int c = LCA(a, b);
    int d_ac = depth[a] - depth[c];
    int d_bc = depth[b] - depth[c];
    if (k > d_ac + d_bc) return -1;
    if (k <= d_ac) return LA(a, k);
    return LA(b, d_ac + d_bc - k);
  }

  vc<int> collect_child(int v) {
    vc<int> res;
    for (auto &&e: G[v])
      if (e.to != parent[v]) res.eb(e.to);
    return res;
  }

  vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
    // [始点, 終点] の"閉"区間列。
    vc<pair<int, int>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        down.eb(LID[head[v]], LID[v]);
        v = parent[head[v]];
      } else {
        up.eb(LID[u], LID[head[u]]);
        u = parent[head[u]];
      }
    }
    if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
    elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
    reverse(all(down));
    up.insert(up.end(), all(down));
    return up;
  }

  vc<int> restore_path(int u, int v) {
    vc<int> P;
    for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
      if (a <= b) {
        FOR(i, a, b + 1) P.eb(V[i]);
      } else {
        FOR_R(i, b, a + 1) P.eb(V[i]);
      }
    }
    return P;
  }
};
#line 2 "library/graph/dsu_on_tree.hpp"

// add(v) : 頂点 v のデータを追加する
// query(v) : 頂点 v におけるクエリに答える
// reset() : データが空の状態に戻す。
// データ構造によっては、履歴を使って高速に reset する。
template <typename TREE, typename F1, typename F2, typename F3>
void DSU_on_Tree(TREE& tree, F1& add, F2& query, F3& reset) {
  int N = tree.N;
  FOR_R(vid, N) {
    int v = tree.V[vid];
    add(v);
    // collect data in light subtree
    for (auto&& e: tree.G[v]) {
      if (e.to == tree.parent[v]) continue;
      if (tree.head[e.to] != e.to) continue;
      FOR(idx, tree.LID[e.to], tree.RID[e.to]) { add(tree.V[idx]); }
    }
    query(v);

    if (tree.head[v] == v) reset();
  }
}
#line 9 "main.cpp"

Counter<100001, 100000, false> X1, X2;

// 各辺を切ったときの増分を返す
pair<int, vc<int>> solve_conn(Graph<bool, 0> G0, vc<int> A) {
  const int N = G0.N, M = G0.M;

  auto [nc, comp] = two_edge_component(G0);
  vvc<int> vals(nc);
  FOR(v, N) vals[comp[v]].eb(A[v]);

  vc<int> ANS(M);
  vc<int> new_idx(M, -1);

  Graph<bool, 0> G(nc);
  int p = 0;
  for (auto&& e: G0.edges) {
    int a = comp[e.frm], b = comp[e.to];
    if (a == b) continue;
    G.add(a, b);
    new_idx[e.id] = p++;
  }
  G.build();
  Tree<decltype(G)> tree(G);
  vc<int> dp(G.N);

  for (auto&& x: A) X1.add(x);
  vc<int> history;
  auto ADD = [&](int v) -> void {
    history.eb(v);
    for (auto&& x: vals[v]) { X1.remove(x), X2.add(x); }
  };
  auto QUERY = [&](int v) -> void { dp[v] = X1.max_freq() + X2.max_freq(); };
  auto RESET = [&]() -> void {
    for (auto&& v: history) {
      for (auto&& x: vals[v]) { X1.add(x), X2.remove(x); }
    }
    history.clear();
  };
  DSU_on_Tree(tree, ADD, QUERY, RESET);
  for (auto&& x: A) X1.remove(x);

  ll base = dp[0];
  FOR(i, M) {
    auto eid = new_idx[i];
    if (eid == -1) continue;
    int a = G.edges[eid].frm, b = G.edges[eid].to;
    if (tree.parent[a] == b) swap(a, b);
    ANS[i] = dp[b] - base;
  }
  return {base, ANS};
}

void solve() {
  LL(N, M);
  VEC(int, A, N);
  Graph<bool, 0> G0(N);
  G0.read_graph(M);

  UnionFind uf(N);
  for (auto&& e: G0.edges) { uf.merge(e.frm, e.to); }

  vvc<int> V(N);
  FOR(v, N) V[uf[v]].eb(v);

  vi ANS(M);
  ll base = 0;

  FOR(v, N) {
    if (uf[v] != v) continue;
    auto [G, es] = G0.rearrange(V[v]);
    vc<int> B = rearrange(A, V[v]);
    auto [x, res] = solve_conn(G, B);
    base += x;
    FOR(i, len(es)) { ANS[es[i]] += res[i]; }
  }

  for (auto&& x: ANS) x += base;
  print(ANS);
}

signed main() {
  INT(T);
  FOR(T) solve();
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 3ms
memory: 4500kb

input:

3
7 5
1 2 1 2 1 2 1
1 2
1 3
2 4
5 6
5 7
3 3
1 2 3
1 2
1 3
2 3
2 3
12345 54321
1 2
1 2
1 1

output:

6 5 5 5 4
1 1 1
1 1 1

result:

ok 3 lines

Test #2:

score: 0
Accepted
time: 1204ms
memory: 40468kb

input:

5557
2 7
79960 79960
2 2
1 1
1 1
2 2
1 1
2 1
1 2
9 8
21881 70740 70740 21881 22458 22458 639 21881 70740
3 3
1 6
5 8
7 5
5 7
2 3
5 1
7 6
6 7
13064 20716 6746 13064 6746 69225
5 5
4 1
4 1
1 6
4 5
3 2
3 2
8 4
45146 14400 45146 45146 14400 72969 14400 45146
8 6
1 3
4 6
8 3
18 13
48132 37949 92338 92338...

output:

2 2 2 2 2 2 2
6 6 7 6 6 6 6 6
3 3 3 4 4 3 3
7 7 7 7
9 9 9 8 9 8 9 8 9 9 10 9 9
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7 8
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
9 10 9
16 16 16 16 16 17 16 16
10 10 11 10 12 11 10 10 10 10 10 10 10 12 10 10 10 10 10 11
10 9 9 9 9 9 9 9 9 9 9 9 9 9 10 ...

result:

ok 5557 lines

Test #3:

score: 0
Accepted
time: 1149ms
memory: 42992kb

input:

10
100000 99999
3983 3983 20157 97983 20157 20157 3983 3983 97983 20157 20157 3983 97983 20157 3983 20157 20157 3983 3983 3983 97983 97983 20157 3983 3983 97983 20157 97983 20157 97983 3983 97983 97983 3983 20157 3983 20157 20157 97983 3983 3983 3983 3983 97983 97983 3983 97983 97983 3983 20157 3983...

output:

33392 33393 33393 33393 33393 33392 33392 33393 33393 33393 33392 33393 33393 33392 33393 33393 33392 33392 33392 33393 33393 33393 33392 33392 33393 33393 33393 33393 33393 33392 33393 33393 33392 33393 33392 33393 33393 33393 33392 33392 33392 33392 33393 33393 33392 33393 33393 33392 33393 33392 ...

result:

ok 10 lines

Test #4:

score: 0
Accepted
time: 1117ms
memory: 42492kb

input:

10
100000 99999
27534 27534 3780 3780 27534 53544 27534 3780 3780 53544 53544 27534 53544 53544 3780 3780 3780 3780 53544 27534 3780 3780 53544 27534 27534 53544 27534 27534 53544 27534 27534 27534 3780 27534 27534 3780 3780 3780 27534 53544 3780 53544 27534 3780 3780 3780 27534 27534 27534 3780 275...

output:

33613 33601 33601 33600 33600 33601 33601 33601 33600 33601 33600 33600 33601 33601 33601 33601 33601 33601 33600 33600 33601 33601 33601 33601 33600 33601 33601 33600 33601 33600 33601 33600 33601 33601 33601 33601 33600 33601 33601 33601 33601 33601 33601 33601 33601 33601 33600 33601 33600 33601 ...

result:

ok 10 lines

Test #5:

score: 0
Accepted
time: 1110ms
memory: 43548kb

input:

10
100000 99999
92499 92270 92270 92499 92499 92499 92270 54017 92270 92270 92270 54017 54017 54017 54017 92270 92499 54017 92270 54017 92499 92499 92270 92270 54017 54017 54017 54017 92270 92270 92499 54017 54017 92499 92499 54017 92270 92270 54017 92499 92270 92270 54017 54017 54017 92499 92499 54...

output:

33506 33482 33507 33482 33508 33483 33508 33483 33508 33483 33507 33483 33506 33483 33505 33483 33503 33483 33503 33482 33504 33483 33505 33483 33504 33483 33502 33483 33501 33483 33500 33482 33502 33483 33500 33483 33501 33482 33502 33483 33501 33483 33500 33482 33500 33483 33498 33483 33499 33483 ...

result:

ok 10 lines

Test #6:

score: 0
Accepted
time: 1091ms
memory: 42804kb

input:

10
100000 99999
76207 76207 88551 88551 98176 76207 98176 88551 88551 98176 88551 76207 76207 98176 98176 76207 76207 88551 76207 88551 76207 88551 88551 76207 88551 76207 98176 88551 76207 98176 88551 88551 76207 88551 98176 88551 76207 76207 98176 88551 76207 98176 76207 88551 88551 88551 88551 76...

output:

33484 33484 33476 33484 33477 33485 33476 33485 33477 33485 33477 33486 33477 33484 33477 33485 33476 33485 33476 33485 33476 33483 33477 33483 33477 33485 33476 33485 33477 33485 33476 33487 33476 33487 33476 33486 33477 33486 33476 33486 33477 33486 33476 33486 33476 33486 33477 33487 33477 33487 ...

result:

ok 10 lines

Test #7:

score: 0
Accepted
time: 1045ms
memory: 43292kb

input:

10
100000 99999
70486 49904 70486 49904 87935 49904 49904 87935 87935 49904 49904 87935 49904 87935 87935 70486 49904 87935 87935 49904 70486 87935 49904 70486 87935 87935 49904 49904 49904 87935 70486 70486 70486 49904 70486 87935 87935 87935 70486 87935 70486 49904 87935 49904 49904 87935 70486 87...

output:

33491 33486 33489 33486 33489 33486 33489 33486 33487 33486 33487 33486 33486 33485 33486 33486 33486 33486 33485 33486 33485 33485 33486 33486 33485 33486 33485 33486 33485 33485 33485 33486 33485 33486 33485 33486 33485 33486 33485 33486 33485 33486 33485 33486 33485 33486 33485 33485 33486 33485 ...

result:

ok 10 lines

Test #8:

score: 0
Accepted
time: 1054ms
memory: 42448kb

input:

10
100000 99999
98004 33580 98004 98004 98004 92291 92291 98004 98004 92291 92291 33580 98004 92291 33580 98004 98004 33580 98004 92291 92291 33580 92291 92291 98004 33580 98004 33580 33580 98004 33580 92291 33580 33580 92291 92291 92291 98004 33580 98004 92291 92291 33580 92291 98004 98004 92291 92...

output:

33462 33463 33421 33463 33422 33465 33421 33463 33422 33464 33422 33462 33422 33464 33421 33464 33422 33464 33422 33465 33422 33463 33422 33462 33422 33463 33422 33465 33421 33464 33422 33464 33422 33463 33422 33463 33421 33463 33421 33462 33422 33460 33422 33461 33421 33461 33422 33460 33422 33459 ...

result:

ok 10 lines