QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#106760#5670. Group GuestsmaspyRE 2ms3556kbC++2333.0kb2023-05-19 04:57:312023-05-19 04:57:34

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-05-19 04:57:34]
  • 评测
  • 测评结果:RE
  • 用时:2ms
  • 内存:3556kb
  • [2023-05-19 04:57:31]
  • 提交

answer

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  assert(!que.empty());
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  assert(!que.empty());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.write(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};

struct has_read_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.read(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <typename T,
            typename enable_if<has_read<T>::value>::type * = nullptr>
  inline bool read_single(T &x) {
    x.read();
    return true;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <size_t N = 0, typename T>
  void read_single_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
      auto &x = std::get<N>(t);
      read_single(x);
      read_single_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool read_single(tuple<T...> &tpl) {
    read_single_tuple(tpl);
    return true;
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <typename T,
            typename enable_if<has_write<T>::value>::type * = nullptr>
  inline void write(T x) {
    x.write();
  }
  template <class T>
  void write(const vector<T> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <size_t N = 0, typename T>
  void write_tuple(const T t) {
    if constexpr (N < std::tuple_size<T>::value) {
      if constexpr (N > 0) { write(' '); }
      const auto x = std::get<N>(t);
      write(x);
      write_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool write(tuple<T...> tpl) {
    write_tuple(tpl);
    return true;
  }
  template <class T, size_t S>
  void write(const array<T, S> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if (val < 0) {
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if (negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "library/graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }
  constexpr bool is_directed() { return directed; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  Graph<T, directed> rearrange(vc<int> V) {
    int n = len(V);
    map<int, int> MP;
    FOR(i, n) MP[V[i]] = i;
    Graph<T, directed> G(n);
    for (auto&& e: edges) {
      if (MP.count(e.frm) && MP.count(e.to)) {
        G.add(MP[e.frm], MP[e.to], e.cost);
      }
    }
    G.build();
    return G;
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 2 "library/graph/block_cut.hpp"

/*
block-cut tree を、block に通常の頂点を隣接させて拡張しておく
https://twitter.com/noshi91/status/1529858538650374144?s=20&t=eznpFbuD9BDhfTb4PplFUg
[0, n):もとの頂点 [n, n + n_block):block
関節点:[0, n) のうちで、degree >= 2 を満たすもの

孤立点は、1 点だけからなる block
*/
template <typename GT>
Graph<int, 0> block_cut(GT& G) {
  int n = G.N;
  vc<int> low(n), ord(n), st;
  vc<bool> used(n);
  st.reserve(n);
  int nxt = n;
  int k = 0;
  vc<pair<int, int>> edges;

  auto dfs = [&](auto& dfs, int v, int p) -> void {
    st.eb(v);
    used[v] = 1;
    low[v] = ord[v] = k++;
    int child = 0;
    for (auto&& e: G[v]) {
      if (e.to == p) continue;
      if (!used[e.to]) {
        ++child;
        int s = len(st);
        dfs(dfs, e.to, v);
        chmin(low[v], low[e.to]);
        if ((p == -1 && child > 1) || (p != -1 && low[e.to] >= ord[v])) {
          edges.eb(nxt, v);
          while (len(st) > s) {
            edges.eb(nxt, st.back());
            st.pop_back();
          }
          ++nxt;
        }
      } else {
        chmin(low[v], ord[e.to]);
      }
    }
  };
  FOR(v, n) if (!used[v]) {
    dfs(dfs, v, -1);
    for (auto&& x: st) { edges.eb(nxt, x); }
    ++nxt;
    st.clear();
  }
  Graph<int, 0> BCT(nxt);
  for (auto&& [a, b]: edges) BCT.add(a, b);
  BCT.build();
  return BCT;
}
#line 2 "library/graph/tree.hpp"

#line 4 "library/graph/tree.hpp"

// HLD euler tour をとっていろいろ。
// 木以外、非連結でも dfs 順序や親がとれる。
template <typename GT>
struct Tree {
  using Graph_type = GT;
  GT &G;
  using WT = typename GT::cost_type;
  int N;
  vector<int> LID, RID, head, V, parent, VtoE;
  vc<int> depth;
  vc<WT> depth_weighted;

  Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); }

  void build(int r = 0, bool hld = 1) {
    if (r == -1) return; // build を遅延したいとき
    N = G.N;
    LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);
    V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);
    depth.assign(N, -1), depth_weighted.assign(N, 0);
    assert(G.is_prepared());
    int t1 = 0;
    dfs_sz(r, -1, hld);
    dfs_hld(r, t1);
  }

  void dfs_sz(int v, int p, bool hld) {
    auto &sz = RID;
    parent[v] = p;
    depth[v] = (p == -1 ? 0 : depth[p] + 1);
    sz[v] = 1;
    int l = G.indptr[v], r = G.indptr[v + 1];
    auto &csr = G.csr_edges;
    // 使う辺があれば先頭にする
    for (int i = r - 2; i >= l; --i) {
      if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
    }
    int hld_sz = 0;
    for (int i = l; i < r; ++i) {
      auto e = csr[i];
      if (depth[e.to] != -1) continue;
      depth_weighted[e.to] = depth_weighted[v] + e.cost;
      VtoE[e.to] = e.id;
      dfs_sz(e.to, v, hld);
      sz[v] += sz[e.to];
      if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
    }
  }

  void dfs_hld(int v, int &times) {
    LID[v] = times++;
    RID[v] += LID[v];
    V[LID[v]] = v;
    bool heavy = true;
    for (auto &&e: G[v]) {
      if (depth[e.to] <= depth[v]) continue;
      head[e.to] = (heavy ? head[v] : e.to);
      heavy = false;
      dfs_hld(e.to, times);
    }
  }

  vc<int> heavy_path_at(int v) {
    vc<int> P = {v};
    while (1) {
      int a = P.back();
      for (auto &&e: G[a]) {
        if (e.to != parent[a] && head[e.to] == v) {
          P.eb(e.to);
          break;
        }
      }
      if (P.back() == a) break;
    }
    return P;
  }

  int e_to_v(int eid) {
    auto e = G.edges[eid];
    return (parent[e.frm] == e.to ? e.frm : e.to);
  }
  int v_to_e(int v) { return VtoE[v]; }

  int ELID(int v) { return 2 * LID[v] - depth[v]; }
  int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }

  /* k: 0-indexed */
  int LA(int v, int k) {
    assert(k <= depth[v]);
    while (1) {
      int u = head[v];
      if (LID[v] - k >= LID[u]) return V[LID[v] - k];
      k -= LID[v] - LID[u] + 1;
      v = parent[u];
    }
  }
  int la(int u, int v) { return LA(u, v); }

  int LCA(int u, int v) {
    for (;; v = parent[head[v]]) {
      if (LID[u] > LID[v]) swap(u, v);
      if (head[u] == head[v]) return u;
    }
  }
  // root を根とした場合の lca
  int LCA_root(int u, int v, int root) {
    return LCA(u, v) ^ LCA(u, root) ^ LCA(v, root);
  }
  int lca(int u, int v) { return LCA(u, v); }
  int lca_root(int u, int v, int root) { return LCA_root(u, v, root); }

  int subtree_size(int v, int root = -1) {
    if (root == -1) return RID[v] - LID[v];
    if (v == root) return N;
    int x = jump(v, root, 1);
    if (in_subtree(v, x)) return RID[v] - LID[v];
    return N - RID[x] + LID[x];
  }

  int dist(int a, int b) {
    int c = LCA(a, b);
    return depth[a] + depth[b] - 2 * depth[c];
  }

  WT dist_weighted(int a, int b) {
    int c = LCA(a, b);
    return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
  }

  // a is in b
  bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }

  int jump(int a, int b, ll k) {
    if (k == 1) {
      if (a == b) return -1;
      return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
    }
    int c = LCA(a, b);
    int d_ac = depth[a] - depth[c];
    int d_bc = depth[b] - depth[c];
    if (k > d_ac + d_bc) return -1;
    if (k <= d_ac) return LA(a, k);
    return LA(b, d_ac + d_bc - k);
  }

  vc<int> collect_child(int v) {
    vc<int> res;
    for (auto &&e: G[v])
      if (e.to != parent[v]) res.eb(e.to);
    return res;
  }

  vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
    // [始点, 終点] の"閉"区間列。
    vc<pair<int, int>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        down.eb(LID[head[v]], LID[v]);
        v = parent[head[v]];
      } else {
        up.eb(LID[u], LID[head[u]]);
        u = parent[head[u]];
      }
    }
    if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
    elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
    reverse(all(down));
    up.insert(up.end(), all(down));
    return up;
  }

  vc<int> restore_path(int u, int v) {
    vc<int> P;
    for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
      if (a <= b) {
        FOR(i, a, b + 1) P.eb(V[i]);
      } else {
        FOR_R(i, b, a + 1) P.eb(V[i]);
      }
    }
    return P;
  }
};
#line 2 "library/enumerate/triangle.hpp"

template <typename Gr, typename F>
void enumerate_triangle(Gr& G, F query) {
  int N = G.N;
  Graph<int, 1> H(N);
  for (auto&& e: G.edges) {
    // 注意:次数比較だけだと DAG にならず、サイクルができてしまう
    if (mp(G.deg(e.frm), e.frm) < mp(G.deg(e.to), e.to))
      H.add(e.frm, e.to);
    else
      H.add(e.to, e.frm);
  }
  H.build();

  vc<bool> table(N);
  FOR(a, N) {
    for (auto&& e: H[a]) { table[e.to] = 1; }
    for (auto&& e: H[a]) {
      int b = e.to;
      for (auto&& f: H[b]) {
        int c = f.to;
        if (table[c]) query(a, b, c);
      }
    }
    for (auto&& e: H[a]) { table[e.to] = 0; }
  }
}
#line 2 "library/ds/unionfind/unionfind.hpp"

struct UnionFind {
  int n, n_comp;
  vc<int> dat; // par or (-size)
  UnionFind(int n = 0) { build(n); }

  void build(int m) {
    n = m, n_comp = m;
    dat.assign(n, -1);
  }

  void reset() { build(n); }

  int operator[](int x) {
    while (dat[x] >= 0) {
      int pp = dat[dat[x]];
      if (pp < 0) { return dat[x]; }
      x = dat[x] = pp;
    }
    return x;
  }

  ll size(int x) {
    assert(dat[x] < 0);
    return -dat[x];
  }

  bool merge(int x, int y) {
    x = (*this)[x], y = (*this)[y];
    if (x == y) return false;
    if (-dat[x] < -dat[y]) swap(x, y);
    dat[x] += dat[y], dat[y] = x, n_comp--;
    return true;
  }
};
#line 2 "library/ds/rollback_array.hpp"

template <typename T>
struct Rollback_Array {
  int N;
  vc<T> dat;
  vc<pair<int, T>> history;

  Rollback_Array(vc<T> x) : N(len(x)), dat(x) {}
  Rollback_Array(int N) : N(N), dat(N) {}
  template <typename F>
  Rollback_Array(int N, F f) : N(N) {
    dat.reserve(N);
    FOR(i, N) dat.eb(f(i));
  }

  int time() { return len(history); }
  void rollback(int t) {
    FOR_R(i, t, time()) {
      auto& [idx, v] = history[i];
      dat[idx] = v;
    }
    history.resize(t);
  }
  T get(int idx) { return dat[idx]; }
  void set(int idx, T x) {
    history.eb(idx, dat[idx]);
    dat[idx] = x;
  }

  vc<T> get_all() {
    vc<T> res(N);
    FOR(i, N) res[i] = get(i);
    return res;
  }
};
#line 2 "library/ds/unionfind/rollback_unionfind.hpp"

struct Rollback_UnionFind {
  Rollback_Array<int> dat; // parent or size

  Rollback_UnionFind(int n) : dat(vc<int>(n, -1)) {}

  int operator[](int v) {
    while (dat.get(v) >= 0) v = dat.get(v);
    return v;
  }

  ll size(int v) { return -dat.get((*this)[v]); }
  int time() { return dat.time(); }
  void rollback(int t) { dat.rollback(t); }

  bool merge(int a, int b) {
    a = (*this)[a], b = (*this)[b];
    if (a == b) return false;
    if (dat.get(a) > dat.get(b)) swap(a, b);
    dat.set(a, dat.get(a) + dat.get(b));
    dat.set(b, a);
    return true;
  }
};
#line 1 "library/ds/offline_query/add_remove_query.hpp"
/*
・時刻 t に x を追加する
・時刻 t に x を削除する
があるときに、
・時刻 [l, r) に x を追加する
に変換する。
クエリが時系列順に来ることが分かっているときは monotone = true の方が高速。
*/
template <typename X, bool monotone>
struct Add_Remove_Query {
  map<X, int> MP;
  vc<tuple<int, int, X>> dat;
  map<X, vc<int>> ADD;
  map<X, vc<int>> RM;

  void add(int time, X x) {
    if (monotone) return add_monotone(time, x);
    ADD[x].eb(time);
  }
  void remove(int time, X x) {
    if (monotone) return remove_monotone(time, x);
    RM[x].eb(time);
  }

  // すべてのクエリが終わった現在時刻を渡す
  vc<tuple<int, int, X>> calc(int time) {
    if (monotone) return calc_monotone(time);
    vc<tuple<int, int, X>> dat;
    for (auto&& [x, A]: ADD) {
      vc<int> B;
      if (RM.count(x)) {
        B = RM[x];
        RM.erase(x);
      }
      if (len(B) < len(A)) B.eb(time);
      assert(len(A) == len(B));

      sort(all(A));
      sort(all(B));
      FOR(i, len(A)) {
        assert(A[i] <= B[i]);
        if (A[i] < B[i]) dat.eb(A[i], B[i], x);
      }
    }
    assert(len(RM) == 0);
    return dat;
  }

private:
  void add_monotone(int time, X x) {
    assert(!MP.count(x));
    MP[x] = time;
  }
  void remove_monotone(int time, X x) {
    auto it = MP.find(x);
    assert(it != MP.end());
    int t = (*it).se;
    MP.erase(it);
    if (t == time) return;
    dat.eb(t, time, x);
  }
  vc<tuple<int, int, X>> calc_monotone(int time) {
    for (auto&& [x, t]: MP) {
      if (t == time) continue;
      dat.eb(t, time, x);
    }
    return dat;
  }
};
#line 12 "main.cpp"

bool triangle(Graph<bool, 0> G) {
  ll N = G.N;
  ll M = G.M;
  // DFS tree
  Graph<bool, 1> DFS(N);
  {
    vc<bool> vis(N);
    auto dfs = [&](auto& dfs, int v, int p) -> void {
      vis[v] = 1;
      for (auto&& e: G[v]) {
        if (e.to == p) continue;
        if (vis[e.to]) continue;
        DFS.add(v, e.to);
        dfs(dfs, e.to, v);
      }
    };
    dfs(dfs, 0, -1);
    DFS.build();
    assert(DFS.M == N - 1);
  }

  Tree<decltype(DFS)> tree(DFS);

  auto in_tree = [&](int a, int b) -> bool {
    return tree.parent[a] == b || tree.parent[b] == a;
  };

  using T = tuple<int, int, int>;
  vc<T> cand;
  // すべて木にない
  bool OK = 0;
  enumerate_triangle<decltype(G)>(G, [&](int a, int b, int c) -> void {
    if (OK) return;
    if (in_tree(a, b) || in_tree(b, c) || in_tree(c, a)) {
      cand.eb(a, b, c);
      return;
    }
    OK = 1;
  });
  if (OK) return 1;

  // それ以外の消し方は、高々 O(M) 通りである。
  assert(len(cand) <= M);

  // あとは、rollback unionfind で頑張る
  Add_Remove_Query<pair<int, int>, true> X;
  int t = 0;
  for (auto&& e: G.edges) {
    int a = e.frm, b = e.to;
    if (a > b) swap(a, b);
    X.add(t, {a, b});
  }
  for (auto&& [a, b, c]: cand) {
    if (a > b) swap(a, b);
    if (b > c) swap(b, c);
    if (a > b) swap(a, b);
    if (b > c) swap(b, c);
    if (a > b) swap(a, b);
    if (b > c) swap(b, c);
    X.remove(t, {a, b});
    X.remove(t, {a, c});
    X.remove(t, {b, c});
    ++t;
  }

  Rollback_UnionFind uf(N);
  Rollback_Array<int> A(N); // root -> edge
  int odd = 0;

  // rollback_dfs
  auto upd = X.calc(len(cand));
  vc<int> I(len(upd));
  iota(all(I), 0);

  auto dfs = [&](auto& dfs, vc<int>& upd_query_I, int begin, int end) -> void {
    if (OK) return;
    if (begin == end) return;
    // snapshot
    int memo_odd = odd;
    int uf_time = uf.time();
    int A_time = A.time();

    vc<int> IL, IR;
    int mid = (begin + end) / 2;
    for (auto&& i: upd_query_I) {
      auto [a, b, X] = upd[i];
      if (a <= begin && end <= b) {
        // X で表される update query を処理する
        auto [u, v] = X;
        if (uf[u] != uf[v]) {
          int a = uf[u], b = uf[v];
          int xa = A.get(a), xb = A.get(b);
          if (xa % 2 == 1) --odd;
          if (xb % 2 == 1) --odd;
          int x = A.get(a) + A.get(b);
          if (x % 2 == 1) ++odd;
          uf.merge(u, v);
          a = uf[a];
          A.set(a, x);
        }
        u = uf[u];
        int x = A.get(u);
        if (x % 2 == 1) --odd;
        A.set(u, x + 1);
        if (x % 2 == 0) ++odd;
      } else {
        if (a < mid) IL.eb(i);
        if (mid < b) IR.eb(i);
      }
    }
    if (begin + 1 == end) {
      // 求値クエリ
      if (odd == 0) OK = 1;
    } else {
      dfs(dfs, IL, begin, mid);
      dfs(dfs, IR, mid, end);
    }
    // rollback
    odd = memo_odd;
    uf.rollback(uf_time);
    A.rollback(A_time);
  };
  dfs(dfs, I, 0, len(cand));
  return OK;
}

bool star(Graph<bool, 0> G) {
  ll N = G.N;
  ll M = G.M;
  auto BCT = block_cut<decltype(G)>(G);
  Tree<decltype(BCT)> tree(BCT);

  vc<int> dp(BCT.N);
  FOR(i, N) dp[i] = 1;
  FOR_R(i, 1, BCT.N) {
    int v = tree.V[i];
    int p = tree.parent[v];
    dp[p] += dp[v];
  }

  FOR(v, N) {
    vc<int> nbd;
    for (auto&& e: BCT[v]) nbd.eb(e.to);
    sort(all(nbd));
    int n = len(nbd);
    vc<int> cnt(n);
    for (auto&& e: G[v]) {
      int idx = tree.jump(v, e.to, 1);
      idx = LB(nbd, idx);
      cnt[idx]++;
    }
    vc<int> parity(n);
    FOR(i, n) {
      if (nbd[i] != tree.parent[v]) {
        parity[i] = dp[nbd[i]] & 1;
      } else {
        parity[i] = (N - dp[v]) & 1;
      }
    }
    ll k = 0;
    FOR(i, n) {
      if (parity[i] == 0)
        k += cnt[i];
      else
        k += cnt[i] - 1;
    }
    if (k >= 3) return true;
  }
  return false;
}

pi solve_connected(Graph<bool, 0> G) {
  ll N = G.N;
  ll M = G.M;
  if (M % 2 == 0) return {0, 0};

  if (triangle(G)) return {0, 0};
  if (star(G)) return {0, 1};
  return {1, 0};
}

void solve() {
  LL(M, N);
  Graph<bool, 0> G(N);
  G.read_graph(M);

  UnionFind uf(N);
  for (auto&& e: G.edges) uf.merge(e.frm, e.to);

  vvc<int> comp(N);
  FOR(v, N) comp[uf[v]].eb(v);

  pi ANS = {0, 0};

  for (auto&& V: comp) {
    if (len(V) <= 1) continue;
    auto H = G.rearrange(V);
    auto [a, b] = solve_connected(H);
    ANS.fi += a, ANS.se += b;
  }
  print(ANS);
}

signed main() {
  solve();
  return 0;
}

詳細信息

Test #1:

score: 100
Accepted
time: 2ms
memory: 3552kb

input:

2 4
1 2
3 4

output:

2 0

result:

ok single line: '2 0'

Test #2:

score: 0
Accepted
time: 0ms
memory: 3556kb

input:

2 3
1 2
3 1

output:

0 0

result:

ok single line: '0 0'

Test #3:

score: 0
Accepted
time: 2ms
memory: 3480kb

input:

5 5
1 2
2 3
2 4
5 2
5 4

output:

0 0

result:

ok single line: '0 0'

Test #4:

score: -100
Dangerous Syscalls

input:

999990 666660
1 2
1 5
1 7
1 8
1 9
1 10
2 4
2 6
2 9
2 10
3 4
4 8
5 8
6 7
6 10
11 13
11 15
11 20
12 17
12 19
13 16
13 19
14 16
14 19
15 17
15 18
16 17
16 19
17 18
17 20
21 26
21 27
21 29
22 26
22 27
22 29
23 26
23 30
24 26
24 28
25 27
25 30
26 27
26 29
28 29
31 33
31 40
32 35
33 35
33 37
33 38
33 39
3...

output:


result: