QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#106538 | #5257. Money Laundering | maspy | AC ✓ | 857ms | 19768kb | C++23 | 26.9kb | 2023-05-18 01:28:36 | 2023-05-18 01:28:40 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
assert(!que.empty());
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
assert(!que.empty());
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>
namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
template <class T>
static auto check(T &&x) -> decltype(x.write(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};
struct has_read_impl {
template <class T>
static auto check(T &&x) -> decltype(x.read(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};
struct Scanner {
FILE *fp;
char line[(1 << 15) + 1];
size_t st = 0, ed = 0;
void reread() {
memmove(line, line + st, ed - st);
ed -= st;
st = 0;
ed += fread(line + ed, 1, (1 << 15) - ed, fp);
line[ed] = '\0';
}
bool succ() {
while (true) {
if (st == ed) {
reread();
if (st == ed) return false;
}
while (st != ed && isspace(line[st])) st++;
if (st != ed) break;
}
if (ed - st <= 50) {
bool sep = false;
for (size_t i = st; i < ed; i++) {
if (isspace(line[i])) {
sep = true;
break;
}
}
if (!sep) reread();
}
return true;
}
template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
while (true) {
size_t sz = 0;
while (st + sz < ed && !isspace(line[st + sz])) sz++;
ref.append(line + st, sz);
st += sz;
if (!sz || st != ed) break;
reread();
}
return true;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
ref = T(0);
while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
if (neg) ref = -ref;
return true;
}
template <typename T,
typename enable_if<has_read<T>::value>::type * = nullptr>
inline bool read_single(T &x) {
x.read();
return true;
}
bool read_single(double &ref) {
string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
bool read_single(char &ref) {
string s;
if (!read_single(s) || s.size() != 1) return false;
ref = s[0];
return true;
}
template <class T>
bool read_single(vector<T> &ref) {
for (auto &d: ref) {
if (!read_single(d)) return false;
}
return true;
}
template <class T, class U>
bool read_single(pair<T, U> &p) {
return (read_single(p.first) && read_single(p.second));
}
template <size_t N = 0, typename T>
void read_single_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
read_single(x);
read_single_tuple<N + 1>(t);
}
}
template <class... T>
bool read_single(tuple<T...> &tpl) {
read_single_tuple(tpl);
return true;
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
Scanner(FILE *fp) : fp(fp) {}
};
struct Printer {
Printer(FILE *_fp) : fp(_fp) {}
~Printer() { flush(); }
static constexpr size_t SIZE = 1 << 15;
FILE *fp;
char line[SIZE], small[50];
size_t pos = 0;
void flush() {
fwrite(line, 1, pos, fp);
pos = 0;
}
void write(const char val) {
if (pos == SIZE) flush();
line[pos++] = val;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void write(T val) {
if (pos > (1 << 15) - 50) flush();
if (val == 0) {
write('0');
return;
}
if (val < 0) {
write('-');
val = -val; // todo min
}
size_t len = 0;
while (val) {
small[len++] = char(0x30 | (val % 10));
val /= 10;
}
for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
pos += len;
}
void write(const string s) {
for (char c: s) write(c);
}
void write(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) write(s[i]);
}
void write(const double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
void write(const long double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
template <typename T,
typename enable_if<has_write<T>::value>::type * = nullptr>
inline void write(T x) {
x.write();
}
template <class T>
void write(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
template <class T, class U>
void write(const pair<T, U> val) {
write(val.first);
write(' ');
write(val.second);
}
template <size_t N = 0, typename T>
void write_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { write(' '); }
const auto x = std::get<N>(t);
write(x);
write_tuple<N + 1>(t);
}
}
template <class... T>
bool write(tuple<T...> tpl) {
write_tuple(tpl);
return true;
}
template <class T, size_t S>
void write(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
void write(i128 val) {
string s;
bool negative = 0;
if (val < 0) {
negative = 1;
val = -val;
}
while (val) {
s += '0' + int(val % 10);
val /= 10;
}
if (negative) s += "-";
reverse(all(s));
if (len(s) == 0) s = "0";
write(s);
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
scanner.read(head);
read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
constexpr bool is_directed() { return directed; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
// G における頂点 V[i] が、新しいグラフで i になるようにする
Graph<T, directed> rearrange(vc<int> V) {
int n = len(V);
map<int, int> MP;
FOR(i, n) MP[V[i]] = i;
Graph<T, directed> G(n);
for (auto&& e: edges) {
if (MP.count(e.frm) && MP.count(e.to)) {
G.add(MP[e.frm], MP[e.to], e.cost);
}
}
G.build();
return G;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 3 "library/graph/strongly_connected_component.hpp"
template <typename Graph>
pair<int, vc<int>> strongly_connected_component(Graph& G) {
assert(G.is_directed());
assert(G.is_prepared());
int N = G.N;
int C = 0;
vc<int> comp(N);
vc<int> low(N);
vc<int> ord(N, -1);
vc<int> visited;
int now = 0;
auto dfs = [&](auto self, int v) -> void {
low[v] = now;
ord[v] = now;
++now;
visited.eb(v);
for (auto&& [frm, to, cost, id]: G[v]) {
if (ord[to] == -1) {
self(self, to);
chmin(low[v], low[to]);
} else {
chmin(low[v], ord[to]);
}
}
if (low[v] == ord[v]) {
while (1) {
int u = visited.back();
visited.pop_back();
ord[u] = N;
comp[u] = C;
if (u == v) break;
}
++C;
}
};
FOR(v, N) {
if (ord[v] == -1) dfs(dfs, v);
}
FOR(v, N) comp[v] = C - 1 - comp[v];
return {C, comp};
}
template <typename GT>
Graph<int, 1> scc_dag(GT& G, int C, vc<int>& comp) {
Graph<int, 1> DAG(C);
vvc<int> edges(C);
for (auto&& e: G.edges) {
int x = comp[e.frm], y = comp[e.to];
if (x == y) continue;
edges[x].eb(y);
}
FOR(c, C) {
UNIQUE(edges[c]);
for (auto&& to: edges[c]) DAG.add(c, to);
}
DAG.build();
return DAG;
}
#line 1 "library/string/split.hpp"
vc<string> split(string S, char sep = ',') {
vc<string> res = {""};
for (auto&& s: S) {
if (s == sep)
res.eb("");
else
res.back() += s;
}
return res;
}
vc<string> split(string S, string seps = " ,") {
vc<string> res = {""};
for (auto&& s: S) {
if (count(all(seps), s))
res.eb("");
else
res.back() += s;
}
return res;
}
#line 2 "library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n);
if (n >= mod) return 0;
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static const int mod = mint::get_mod();
assert(-1 <= n && n < mod);
static vector<mint> dat = {1, 1};
if (n == -1) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if (dense) return C_dense<mint>(n, k);
if (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d] (1-x) ^ {-n} の計算
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "library/mod/modint.hpp"
template <int mod>
struct modint {
static_assert(mod < (1 << 30));
int val;
constexpr modint(const ll val = 0) noexcept
: val(val >= 0 ? val % mod : (mod - (-val) % mod) % mod) {}
bool operator<(const modint &other) const {
return val < other.val;
} // To use std::map
modint &operator+=(const modint &p) {
if ((val += p.val) >= mod) val -= mod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += mod - p.val) >= mod) val -= mod;
return *this;
}
modint &operator*=(const modint &p) {
val = (int)(1LL * val * p.val % mod);
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint(-val); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
#ifdef FASTIO
void write() { fastio::printer.write(val); }
void read() { fastio::scanner.read(val); }
#endif
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 998244353) return {23, 31};
if (mod == 1045430273) return {20, 363};
if (mod == 1051721729) return {20, 330};
if (mod == 1053818881) return {20, 2789};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 3 "library/linalg/mat_mul.hpp"
template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr>
vc<vc<T>> mat_mul(const vc<vc<T>>& A, const vc<vc<T>>& B) {
constexpr int mod = T::get_mod();
auto N = len(A), M = len(B), K = len(B[0]);
vv(int, b, K, M);
FOR(i, M) FOR(j, K) b[j][i] = B[i][j].val;
vv(T, C, N, K);
if (M <= 16) {
FOR(i, N) FOR(j, K) {
u64 sm = 0;
FOR(m, M) sm += u64(A[i][m].val) * b[j][m];
C[i][j] = sm % mod;
}
} else {
FOR(i, N) FOR(j, K) {
i128 sm = 0;
FOR(m, M) sm += ll(A[i][m].val) * b[j][m];
C[i][j] = sm % mod;
}
}
return C;
}
template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr>
vc<vc<T>> mat_mul(const vc<vc<T>>& A, const vc<vc<T>>& B) {
assert(!A.empty() && !B.empty());
auto N = len(A), M = len(B), K = len(B[0]);
vv(T, b, K, M);
FOR(i, M) FOR(j, K) b[j][i] = B[i][j];
vv(T, C, N, K);
FOR(n, N) FOR(m, M) FOR(k, K) C[n][k] += A[n][m] * b[k][m];
return C;
}
#line 7 "main.cpp"
using Re = double;
void solve() {
LL(N1, N2);
Graph<Re, true> G(N1 + N2);
FOR(i, N1) {
LL(n);
FOR(n) {
STR(S);
auto tokens = split(S, ":");
string A = tokens[0];
Re x = stod(tokens[1]) / 100.0;
int k = stoi(A.substr(1));
--k;
k = (A[0] == 'C' ? k : N1 + k);
G.add(i, k, x);
}
}
G.build();
auto [nc, comp] = strongly_connected_component(G);
vvc<int> V(nc);
FOR(v, N1) V[comp[v]].eb(v);
vv(Re, A, N1 + N2, N2);
FOR(k, N2) A[N1 + k][k] = 1.0;
vc<int> new_idx(N1 + N2, -1);
FOR_R(c, nc) {
vc<int>& vs = V[c];
int n = len(vs);
if (n == 0) continue;
FOR(i, n) new_idx[vs[i]] = i;
vv(Re, mat, n + n, n + n);
FOR(i, n) mat[n + i][n + i] = 1.0;
FOR(i, n) {
for (auto&& e: G[vs[i]]) {
int to = new_idx[e.to];
if (to == -1) to = n + i;
mat[i][to] += e.cost;
}
}
FOR(30) mat = mat_mul(mat, mat);
FOR(i, n) {
int v = vs[i];
FOR(j, n) {
Re x = mat[i][n + j];
if (x == 0.0) continue;
Re out = 0.0;
for (auto&& e: G[vs[j]]) {
if (new_idx[e.to] == -1) out += e.cost;
}
x /= out;
for (auto&& e: G[vs[j]]) {
if (new_idx[e.to] == -1) {
int to = e.to;
Re cf = x * e.cost;
FOR(k, N2) A[v][k] += A[to][k] * cf;
}
}
}
}
FOR(i, n) new_idx[vs[i]] = -1;
}
FOR(v, N1) print(A[v]);
}
signed main() {
solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 2ms
memory: 3564kb
input:
1 1 1 P1:100.0
output:
1.000000000000000
result:
ok found '1.00000', expected '1.00000', error '0.00000'
Test #2:
score: 0
Accepted
time: 2ms
memory: 3568kb
input:
5 10 6 P3:25.8 P9:47.4 P2:6.9 C4:6.9 C5:8.7 P6:4.3 5 C4:7.9 P7:2.9 C5:8.2 P4:56.0 P10:25.0 3 P5:52.2 P1:36.6 C5:11.2 5 P3:54.8 P8:16.6 P7:16.3 P4:8.2 P6:4.1 4 P3:80.6 P4:3.6 P1:15.7 P9:0.1
output:
0.013659000000000 0.069000000000000 0.365934000000000 0.008790000000000 0.000000000000000 0.045829000000000 0.011247000000000 0.011454000000000 0.474087000000000 0.000000000000000 0.012874000000000 0.000000000000000 0.109384000000000 0.569430000000000 0.000000000000000 0.003239000000000 0.0418770000...
result:
ok 50 numbers
Test #3:
score: 0
Accepted
time: 7ms
memory: 4020kb
input:
50 100 4 P93:40.9 P56:8.8 P5:12.4 P28:37.9 5 C17:4.8 P28:4.1 C44:1.6 P38:9.9 P49:79.6 8 C13:0.1 P52:0.1 C5:10.7 C48:0.3 P44:0.1 C37:87.8 C1:0.1 C28:0.8 4 P85:16.2 P36:7.6 P79:48.1 P78:28.1 6 C45:11.1 P50:0.1 P37:85.0 C32:3.3 C4:0.3 C33:0.2 5 P90:47.3 C40:47.0 C19:2.9 P3:2.0 P92:0.8 9 P53:2.7 P37:0.8...
output:
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.124000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.0000000000...
result:
ok 5000 numbers
Test #4:
score: 0
Accepted
time: 415ms
memory: 15660kb
input:
500 1000 8 P484:0.1 P857:75.5 P602:0.2 P27:1.2 P828:0.9 C162:1.8 P413:6.4 P877:13.9 11 P411:0.9 P887:12.9 P93:1.7 C359:0.9 P870:11.6 P400:30.9 P646:0.1 P302:24.9 C397:0.1 P328:15.7 C434:0.3 13 P924:6.4 P806:12.7 P478:28.3 P829:4.4 P805:1.4 P147:0.1 P273:0.1 P954:0.1 P825:0.1 P362:1.0 P606:0.2 P916:0...
output:
0.000000000000000 0.000000000000000 0.000000000000000 0.000001422000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.0000000000...
result:
ok 500000 numbers
Test #5:
score: 0
Accepted
time: 383ms
memory: 15628kb
input:
500 1000 6 P597:6.9 P65:1.1 C125:72.7 P630:1.0 P366:0.7 P3:17.6 9 P76:0.1 C61:0.1 C67:17.1 P457:0.4 C229:45.9 C222:24.9 P53:0.1 P557:11.3 P761:0.1 8 C342:0.4 C218:88.0 P263:0.1 P588:0.8 C22:4.7 C463:2.2 P518:3.7 C482:0.1 9 P313:0.1 C490:55.2 P296:0.1 P901:0.1 C474:0.1 C45:0.4 P200:0.1 C438:0.1 P540:...
output:
0.000000000000000 0.000000000000000 0.176000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.0000000000...
result:
ok 500000 numbers
Test #6:
score: 0
Accepted
time: 403ms
memory: 15868kb
input:
500 1000 9 P466:36.7 P56:0.6 C338:3.4 P795:19.9 C311:0.2 P383:0.1 C182:0.8 P991:38.2 C326:0.1 7 C165:48.0 P605:0.1 P237:0.1 P990:50.7 C335:0.1 P291:0.9 C108:0.1 8 P703:0.3 P482:10.6 P756:6.4 P826:0.7 P995:3.8 P632:28.4 P318:46.2 P739:3.6 11 P592:17.6 P889:15.9 P654:3.7 P182:2.9 C362:15.6 C182:33.1 P...
output:
0.000000003985767 0.000000000000000 0.000000000000000 0.000000000000000 0.000000004320000 0.000000024000000 0.000000000000000 0.000000000488914 0.000000000014858 0.000086000000000 0.007578930208000 0.000000000000020 0.000000000000000 0.000000000000000 0.000000124709023 0.000000000000000 0.0000000000...
result:
ok 500000 numbers
Test #7:
score: 0
Accepted
time: 37ms
memory: 4516kb
input:
393 100 9 P51:0.4 P99:0.1 P37:77.7 P68:0.9 P98:17.3 P4:0.1 P76:3.0 P70:0.1 C1:0.4 13 P41:0.1 P87:3.1 C2:0.3 P44:0.1 P32:0.1 P80:0.1 P35:0.1 P25:0.1 P95:85.8 P26:0.3 C28:9.7 P72:0.1 P70:0.1 11 P49:0.1 P10:29.0 P13:0.1 P31:0.1 P51:11.9 P80:19.9 P73:24.7 C81:13.9 P68:0.1 P3:0.1 P89:0.1 9 P30:5.3 P31:0....
output:
0.000000000000000 0.000000000000000 0.000000000000000 0.001004016064257 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.0000000000...
result:
ok 39300 numbers
Test #8:
score: 0
Accepted
time: 601ms
memory: 17500kb
input:
759 1000 12 P433:75.4 C138:3.7 P8:16.9 P476:2.3 P974:0.4 P290:0.1 P686:0.1 P471:0.1 P399:0.1 P902:0.1 P796:0.7 P815:0.1 7 P66:0.1 P628:6.8 P353:0.1 P520:0.4 P889:0.1 P770:80.3 P477:12.2 14 P572:0.1 P176:11.7 P362:0.4 P856:0.1 P589:23.7 P945:15.0 P571:2.8 P930:0.1 P687:0.1 P807:0.1 P478:0.1 P379:14.0...
output:
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.169000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.0000000000...
result:
ok 759000 numbers
Test #9:
score: 0
Accepted
time: 641ms
memory: 17940kb
input:
802 1000 9 P260:20.8 P122:0.1 P103:0.1 P273:24.1 P815:0.1 P914:54.0 C236:0.3 P589:0.4 P570:0.1 7 P862:47.1 P302:48.2 P524:2.7 P686:1.0 P573:0.6 P810:0.1 P620:0.3 14 P472:0.1 P896:0.1 P831:0.1 P475:0.6 P979:62.2 P326:0.1 P105:0.1 P939:0.9 P980:3.3 P649:0.3 P348:0.1 P132:30.6 P890:1.4 P527:0.1 11 P556...
output:
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.0000000000...
result:
ok 802000 numbers
Test #10:
score: 0
Accepted
time: 2ms
memory: 3772kb
input:
5 3 3 P1:30.0 P2:20.0 P3:50.0 1 C3:100.0 1 C5:100.0 1 C1:100.0 1 C4:100.0
output:
0.300000000000000 0.200000000000000 0.500000000000000 0.300000000000000 0.200000000000000 0.500000000000000 0.300000000000000 0.200000000000000 0.500000000000000 0.300000000000000 0.200000000000000 0.500000000000000 0.300000000000000 0.200000000000000 0.500000000000000
result:
ok 15 numbers
Test #11:
score: 0
Accepted
time: 796ms
memory: 19768kb
input:
1000 1000 1 C753:100.0 1 C331:100.0 1 C992:100.0 1 C84:100.0 1 C658:100.0 1 C683:100.0 1 C341:100.0 1 C28:100.0 1 C513:100.0 1 C685:100.0 1 C699:100.0 1 C169:100.0 1 C420:100.0 1 C694:100.0 1 C405:100.0 1 C601:100.0 1 C948:100.0 1 C208:100.0 1 C214:100.0 1 C26:100.0 1 C904:100.0 1 C49:100.0 1 C142:1...
output:
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.0000000000...
result:
ok 1000000 numbers
Test #12:
score: 0
Accepted
time: 835ms
memory: 19716kb
input:
1000 1000 15 C2:7.6 C418:6.6 C134:6.6 C426:6.6 C75:6.6 C812:6.6 C876:6.6 C460:6.6 C431:6.6 C844:6.6 C721:6.6 C333:6.6 C12:6.6 C373:6.6 C413:6.6 13 C802:8.8 C3:7.6 C293:7.6 C775:7.6 C712:7.6 C201:7.6 C553:7.6 C331:7.6 C947:7.6 C982:7.6 C376:7.6 C251:7.6 C928:7.6 25 C4:4.0 C261:4.0 C518:4.0 C392:4.0 C...
output:
0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.0010000000...
result:
ok 1000000 numbers
Test #13:
score: 0
Accepted
time: 857ms
memory: 19488kb
input:
1000 1000 15 C2:1.3 C418:20.5 C134:4.1 C426:6.0 C75:3.2 C812:7.2 C876:8.4 C460:10.7 C431:5.5 C844:8.6 C721:1.2 C333:2.9 C12:6.3 C373:6.3 C413:7.8 13 C802:28.2 C3:11.4 C293:0.5 C775:13.1 C712:10.4 C201:5.7 C553:6.1 C331:2.5 C947:12.3 C982:1.5 C376:5.1 C251:0.4 C928:2.8 25 C4:0.5 C261:0.3 C518:0.9 C39...
output:
0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.001000000000000 0.0010000000...
result:
ok 1000000 numbers
Test #14:
score: 0
Accepted
time: 838ms
memory: 19464kb
input:
1000 1000 15 C2:6.5 C418:13.2 C134:3.5 C75:3.2 C460:6.9 C844:6.9 C333:0.4 C12:0.8 C267:4.6 P170:0.2 P876:9.0 C373:14.6 P879:4.5 C413:24.6 P728:1.1 15 C802:3.7 C3:14.4 P27:6.3 C293:23.6 C775:0.1 C712:5.8 C201:2.0 C553:2.6 C144:6.8 C947:5.4 C148:12.0 P331:4.7 C982:5.3 C376:4.7 C251:2.6 24 C4:0.9 C261:...
output:
0.000017975157857 0.000008127278259 0.000206248415484 0.000222220641396 0.036520503350575 0.000009989371400 0.000341489102714 0.000128152919733 0.000007965864133 0.000264479261160 0.000002865519358 0.000045757757055 0.000338171115552 0.000016419977960 0.000131990764765 0.000054150445491 0.0001852572...
result:
ok 1000000 numbers
Test #15:
score: 0
Accepted
time: 838ms
memory: 19744kb
input:
1000 1000 16 C2:24.0 C418:1.3 C134:8.1 C359:8.7 C75:10.8 C460:0.7 C844:4.7 C333:3.7 C12:2.8 C267:7.3 P170:5.1 P876:0.8 C373:2.6 P879:0.4 C413:9.7 P728:9.3 16 C802:7.8 C3:13.9 P27:0.5 C293:0.9 C91:1.1 C775:7.7 C712:9.9 C201:6.1 C553:3.8 C144:6.8 C947:6.3 C148:3.4 P331:16.3 C982:7.3 C376:1.6 C251:6.6 ...
output:
0.000029234446813 0.000002414779744 0.000812086530410 0.000046997828958 0.000522967931207 0.000003304478059 0.000108848833904 0.000559730239501 0.000010216052591 0.000010380214548 0.000071556305024 0.000094132181588 0.000112876681550 0.001366438972455 0.000275473771360 0.000013371686945 0.0001006911...
result:
ok 1000000 numbers
Test #16:
score: 0
Accepted
time: 4ms
memory: 3936kb
input:
66 20 7 P18:0.1 C66:0.1 C22:0.1 P6:0.1 P12:84.5 P4:15.0 C9:0.1 10 C48:0.1 P12:0.1 P11:47.6 P1:19.8 P18:1.2 P8:0.1 P5:14.2 C38:16.2 P7:0.1 P20:0.6 10 C46:0.1 C9:0.6 P1:13.8 C29:0.1 P18:48.8 P4:23.9 P14:3.1 P6:9.4 C1:0.1 P10:0.1 9 P12:3.0 P11:86.5 P9:4.1 C61:0.1 P8:3.0 C4:1.2 P13:0.1 P16:1.9 P14:0.1 1...
output:
0.000049748185017 0.000462742727885 0.000000000087570 0.150748868299336 0.000015302810796 0.001524689387985 0.000000068444609 0.000024217737806 0.000045964828322 0.000000359553415 0.000338340348531 0.845432546600711 0.000000055374297 0.000012414502474 0.000000000007854 0.000010474191559 0.0000000014...
result:
ok 1320 numbers
Test #17:
score: 0
Accepted
time: 6ms
memory: 3760kb
input:
64 20 11 C40:1.2 P8:0.1 P16:0.1 C48:46.3 C64:0.1 C17:50.7 P11:1.1 C1:0.1 C34:0.1 P5:0.1 P15:0.1 6 C7:15.8 C2:0.1 C14:5.7 P7:0.3 P6:0.1 C63:78.0 9 P3:2.3 P14:0.1 P4:0.2 C32:0.3 P15:8.6 P18:82.0 P11:0.1 C51:3.8 P6:2.6 8 C13:35.9 P5:4.3 P16:0.3 P9:35.1 C46:5.3 C58:0.6 P8:13.6 P1:4.9 7 C49:0.9 P17:82.0 ...
output:
0.018043047266132 0.002383725998445 0.045912739588061 0.016400455036885 0.042449024377422 0.024096516620048 0.003162873116993 0.205647783087181 0.010960978153139 0.000019019019019 0.026616341112014 0.000963435707274 0.002098009062078 0.001387379719130 0.052471166858921 0.467879269837383 0.0191608890...
result:
ok 1280 numbers
Test #18:
score: 0
Accepted
time: 0ms
memory: 3656kb
input:
61 20 11 P17:0.1 C20:40.2 C1:0.1 P9:12.2 P11:0.1 P12:0.3 P15:0.5 C51:39.6 P14:0.5 P5:0.1 P18:6.3 11 P8:1.4 C2:73.2 C18:0.1 P3:0.1 P9:4.9 C59:0.1 P19:1.0 P11:11.9 P6:7.1 C31:0.1 P20:0.1 9 P1:0.1 P13:0.1 C3:0.2 P18:0.2 P16:98.7 C19:0.1 P3:0.4 P8:0.1 P2:0.1 8 C23:0.7 P19:0.2 P9:0.3 P14:88.6 P4:0.7 P7:9...
output:
0.022782114640338 0.002859642183850 0.000495173633095 0.090789089006656 0.028976436237842 0.130292067918028 0.039325689844394 0.011072798417339 0.129228189811640 0.000009457287150 0.002728618028379 0.113800837129763 0.031265708583314 0.005806051894764 0.005545393782256 0.307775819871327 0.0065613334...
result:
ok 1220 numbers
Test #19:
score: 0
Accepted
time: 4ms
memory: 3724kb
input:
63 20 10 C63:15.0 P15:0.1 C1:54.6 P7:2.3 P2:0.1 P17:0.3 C48:0.1 C9:27.3 P12:0.1 P18:0.1 11 C60:49.6 P16:0.3 P18:0.1 C53:0.2 C15:5.9 P7:2.8 P2:1.7 P15:1.1 P13:0.1 C2:1.2 P14:37.0 11 C48:9.0 P12:0.1 P3:0.2 P8:0.1 P9:29.6 P10:0.3 P2:0.7 P20:3.2 C9:0.1 P13:56.1 P17:0.6 11 C37:0.9 C47:0.2 C4:0.1 P4:24.4 ...
output:
0.099362465144736 0.470684401258568 0.000037527316021 0.000032770644887 0.015021098186708 0.000001023427268 0.050824306295787 0.000000000000000 0.206127080279458 0.000000422098219 0.011919361155429 0.016038862601326 0.091545467065907 0.000001637612460 0.026336965019775 0.000002205393071 0.0066379151...
result:
ok 1260 numbers
Test #20:
score: 0
Accepted
time: 5ms
memory: 3668kb
input:
68 20 10 P17:0.1 P13:0.2 C11:35.4 C37:2.9 P11:0.6 C51:58.7 C21:1.0 C65:0.1 C48:0.1 C1:0.9 12 P13:0.1 P18:1.8 P14:14.8 P20:0.9 C50:0.1 C62:0.1 P3:3.8 P4:70.5 C4:0.9 C2:0.1 C49:3.3 C55:3.6 12 P19:0.8 P1:0.4 C64:1.2 P11:4.4 C6:0.1 C3:0.2 P18:40.8 P12:5.7 P6:5.0 C53:0.6 P17:40.7 C36:0.1 12 P9:0.8 C55:3....
output:
0.000051645878006 0.000000000000000 0.000611833859754 0.001661430475567 0.019715403927486 0.026487876410542 0.007525998362106 0.116793634531318 0.523706677033227 0.000000042195999 0.019934583962930 0.049647331640459 0.006157231974350 0.031809440769159 0.012022789607611 0.020505432117153 0.0013308478...
result:
ok 1360 numbers
Test #21:
score: 0
Accepted
time: 2ms
memory: 3900kb
input:
71 20 8 P15:8.4 P16:62.2 C10:0.1 P8:25.2 C3:1.0 P13:0.1 P9:0.1 C64:2.9 9 P12:1.7 P14:0.6 C53:0.1 C2:25.9 P20:13.6 P2:0.1 P8:1.2 C71:0.2 P5:56.6 9 P1:0.1 P14:0.3 P6:43.7 P16:12.3 C1:5.7 P19:3.4 P7:29.1 P8:0.1 P9:5.3 10 P2:6.4 C63:0.2 P19:1.4 P4:5.6 P14:0.4 P11:0.8 P17:77.9 C4:2.6 P6:0.6 C35:4.1 5 C35...
output:
0.000082332035459 0.000030694117072 0.000119014206221 0.000437696833422 0.000001136085278 0.004374673421876 0.004281850979801 0.257201100766684 0.011547779132302 0.000058702989170 0.000104707926805 0.004431372421612 0.002973415815867 0.000563385051810 0.084084178835689 0.624880639413413 0.0000421727...
result:
ok 1420 numbers
Test #22:
score: 0
Accepted
time: 4ms
memory: 3732kb
input:
66 20 12 C59:1.9 C3:0.1 P1:0.9 P10:0.2 P5:20.1 P7:0.1 C1:34.4 P19:0.2 P15:2.8 P14:12.4 C22:0.8 C49:26.1 8 P1:0.6 P5:0.1 P9:79.0 C10:3.1 P3:16.9 P20:0.1 C51:0.1 C5:0.1 5 P13:1.2 P18:65.4 P20:5.6 C59:0.1 P16:27.7 8 C18:0.1 P15:1.8 P19:74.9 C35:0.2 P12:0.1 P5:0.1 P1:22.6 C24:0.2 5 C16:0.1 P15:56.0 P20:...
output:
0.013820222578291 0.000004904658578 0.000399853216674 0.112521433641205 0.315195730693591 0.000005205691776 0.001530395750311 0.000093689016317 0.139947538464982 0.009301271380700 0.000000003483586 0.000482394071460 0.041541356950710 0.192363187616901 0.079813851745571 0.002284434112252 0.0000000141...
result:
ok 1320 numbers
Test #23:
score: 0
Accepted
time: 6ms
memory: 3928kb
input:
62 20 10 P7:0.2 C13:0.1 P11:6.2 P13:8.2 C40:82.5 C2:0.1 P9:0.1 P20:0.1 P3:1.9 P8:0.6 8 C1:0.1 P14:2.7 C13:0.1 P5:90.6 C2:0.3 P3:0.2 C40:5.9 P16:0.1 9 P9:1.4 P13:0.4 P20:0.3 P5:80.3 P11:4.6 P6:7.3 C3:0.8 P16:0.8 P4:4.1 14 C57:8.9 P10:0.1 P3:24.9 P13:1.4 P1:1.0 C32:15.6 C50:0.1 P9:0.6 P2:0.1 C42:14.0 ...
output:
0.000000000000000 0.000000000000000 0.034651936473190 0.000000000000000 0.027121574893969 0.000000000000000 0.034144111622723 0.120734039813574 0.001820635023523 0.024402273260542 0.112879371458415 0.030571659996659 0.149292071928871 0.000808258854456 0.001125672743206 0.424019433415039 0.0366034098...
result:
ok 1240 numbers
Test #24:
score: 0
Accepted
time: 5ms
memory: 3772kb
input:
67 20 11 P1:4.6 P2:10.2 C65:1.2 C35:7.9 P18:0.6 P13:0.2 P14:33.5 P6:20.4 P3:2.8 C28:18.2 P9:0.4 10 P15:32.1 P2:2.2 P19:2.1 C3:6.1 P7:0.9 P5:22.1 P10:22.9 C2:8.6 P18:1.1 C52:1.9 10 C59:72.7 P14:2.3 P13:0.9 C3:9.8 P17:0.9 P4:0.1 C52:12.4 P15:0.7 P19:0.1 P20:0.1 7 P10:2.7 P9:16.8 P3:0.2 P7:0.6 P11:12.3...
output:
0.046242581775006 0.102090779611707 0.071091661068837 0.000075542340084 0.075987677604520 0.204000000000067 0.000014222521566 0.000000665061638 0.004544321692244 0.096222566117444 0.000000083837882 0.000000293318650 0.002000599041153 0.335016380379381 0.000325112052088 0.000469877947985 0.0533198879...
result:
ok 1340 numbers
Extra Test:
score: 0
Extra Test Passed