QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#106398 | #5504. Flower Garden | maspy | AC ✓ | 2140ms | 358348kb | C++23 | 21.9kb | 2023-05-17 17:24:35 | 2023-05-17 17:24:38 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
assert(!que.empty());
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
assert(!que.empty());
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>
namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
template <class T>
static auto check(T &&x) -> decltype(x.write(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};
struct has_read_impl {
template <class T>
static auto check(T &&x) -> decltype(x.read(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};
struct Scanner {
FILE *fp;
char line[(1 << 15) + 1];
size_t st = 0, ed = 0;
void reread() {
memmove(line, line + st, ed - st);
ed -= st;
st = 0;
ed += fread(line + ed, 1, (1 << 15) - ed, fp);
line[ed] = '\0';
}
bool succ() {
while (true) {
if (st == ed) {
reread();
if (st == ed) return false;
}
while (st != ed && isspace(line[st])) st++;
if (st != ed) break;
}
if (ed - st <= 50) {
bool sep = false;
for (size_t i = st; i < ed; i++) {
if (isspace(line[i])) {
sep = true;
break;
}
}
if (!sep) reread();
}
return true;
}
template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
while (true) {
size_t sz = 0;
while (st + sz < ed && !isspace(line[st + sz])) sz++;
ref.append(line + st, sz);
st += sz;
if (!sz || st != ed) break;
reread();
}
return true;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
ref = T(0);
while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
if (neg) ref = -ref;
return true;
}
template <typename T,
typename enable_if<has_read<T>::value>::type * = nullptr>
inline bool read_single(T &x) {
x.read();
return true;
}
bool read_single(double &ref) {
string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
bool read_single(char &ref) {
string s;
if (!read_single(s) || s.size() != 1) return false;
ref = s[0];
return true;
}
template <class T>
bool read_single(vector<T> &ref) {
for (auto &d: ref) {
if (!read_single(d)) return false;
}
return true;
}
template <class T, class U>
bool read_single(pair<T, U> &p) {
return (read_single(p.first) && read_single(p.second));
}
template <size_t N = 0, typename T>
void read_single_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
read_single(x);
read_single_tuple<N + 1>(t);
}
}
template <class... T>
bool read_single(tuple<T...> &tpl) {
read_single_tuple(tpl);
return true;
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
Scanner(FILE *fp) : fp(fp) {}
};
struct Printer {
Printer(FILE *_fp) : fp(_fp) {}
~Printer() { flush(); }
static constexpr size_t SIZE = 1 << 15;
FILE *fp;
char line[SIZE], small[50];
size_t pos = 0;
void flush() {
fwrite(line, 1, pos, fp);
pos = 0;
}
void write(const char val) {
if (pos == SIZE) flush();
line[pos++] = val;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void write(T val) {
if (pos > (1 << 15) - 50) flush();
if (val == 0) {
write('0');
return;
}
if (val < 0) {
write('-');
val = -val; // todo min
}
size_t len = 0;
while (val) {
small[len++] = char(0x30 | (val % 10));
val /= 10;
}
for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
pos += len;
}
void write(const string s) {
for (char c: s) write(c);
}
void write(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) write(s[i]);
}
void write(const double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
void write(const long double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
template <typename T,
typename enable_if<has_write<T>::value>::type * = nullptr>
inline void write(T x) {
x.write();
}
template <class T>
void write(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
template <class T, class U>
void write(const pair<T, U> val) {
write(val.first);
write(' ');
write(val.second);
}
template <size_t N = 0, typename T>
void write_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { write(' '); }
const auto x = std::get<N>(t);
write(x);
write_tuple<N + 1>(t);
}
}
template <class... T>
bool write(tuple<T...> tpl) {
write_tuple(tpl);
return true;
}
template <class T, size_t S>
void write(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
void write(i128 val) {
string s;
bool negative = 0;
if (val < 0) {
negative = 1;
val = -val;
}
while (val) {
s += '0' + int(val % 10);
val /= 10;
}
if (negative) s += "-";
reverse(all(s));
if (len(s) == 0) s = "0";
write(s);
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
scanner.read(head);
read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
constexpr bool is_directed() { return directed; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
// G における頂点 V[i] が、新しいグラフで i になるようにする
Graph<T, directed> rearrange(vc<int> V) {
int n = len(V);
map<int, int> MP;
FOR(i, n) MP[V[i]] = i;
Graph<T, directed> G(n);
for (auto&& e: edges) {
if (MP.count(e.frm) && MP.count(e.to)) {
G.add(MP[e.frm], MP[e.to], e.cost);
}
}
G.build();
return G;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 3 "library/graph/range_to_range_graph.hpp"
template <typename T>
struct Range_to_Range_Graph {
int n;
int n_node;
vc<tuple<int, int, T>> edges;
Range_to_Range_Graph(int n) : n(n), n_node(n * 3) {
FOR3(i, 2, n + n) { edges.eb(to_upper_idx(i / 2), to_upper_idx(i), 0); }
FOR3(i, 2, n + n) { edges.eb(to_lower_idx(i), to_lower_idx(i / 2), 0); }
}
inline int to_upper_idx(const int& i) {
if (i >= n) return i - n;
return n + i;
}
inline int to_lower_idx(const int& i) {
if (i >= n) return i - n;
return n + n + i;
}
void add(int frm, int to, T wt) { edges.eb(frm, to, wt); }
void add_frm_range(int frm_l, int frm_r, int to, T wt) {
int l = frm_l + n, r = frm_r + n;
while (l < r) {
if (l & 1) add(to_lower_idx(l++), to, wt);
if (r & 1) add(to_lower_idx(--r), to, wt);
l >>= 1, r >>= 1;
}
}
void add_to_range(int frm, int to_l, int to_r, T wt) {
int l = to_l + n, r = to_r + n;
while (l < r) {
if (l & 1) add(frm, to_upper_idx(l++), wt);
if (r & 1) add(frm, to_upper_idx(--r), wt);
l >>= 1, r >>= 1;
}
}
void add_range_to_range(int frm_l, int frm_r, int to_l, int to_r, T wt) {
int new_node = n_node++;
add_frm_range(frm_l, frm_r, new_node, wt);
add_to_range(new_node, to_l, to_r, T(0));
}
Graph<T, 1> build() {
Graph<T, 1> G(n_node);
for (auto&& [a, b, c]: edges) G.add(a, b, c);
G.build();
return G;
}
};
#line 3 "library/graph/strongly_connected_component.hpp"
template <typename Graph>
pair<int, vc<int>> strongly_connected_component(Graph& G) {
assert(G.is_directed());
assert(G.is_prepared());
int N = G.N;
int C = 0;
vc<int> comp(N);
vc<int> low(N);
vc<int> ord(N, -1);
vc<int> visited;
int now = 0;
auto dfs = [&](auto self, int v) -> void {
low[v] = now;
ord[v] = now;
++now;
visited.eb(v);
for (auto&& [frm, to, cost, id]: G[v]) {
if (ord[to] == -1) {
self(self, to);
chmin(low[v], low[to]);
} else {
chmin(low[v], ord[to]);
}
}
if (low[v] == ord[v]) {
while (1) {
int u = visited.back();
visited.pop_back();
ord[u] = N;
comp[u] = C;
if (u == v) break;
}
++C;
}
};
FOR(v, N) {
if (ord[v] == -1) dfs(dfs, v);
}
FOR(v, N) comp[v] = C - 1 - comp[v];
return {C, comp};
}
template <typename GT>
Graph<int, 1> scc_dag(GT& G, int C, vc<int>& comp) {
Graph<int, 1> DAG(C);
vvc<int> edges(C);
for (auto&& e: G.edges) {
int x = comp[e.frm], y = comp[e.to];
if (x == y) continue;
edges[x].eb(y);
}
FOR(c, C) {
UNIQUE(edges[c]);
for (auto&& to: edges[c]) DAG.add(c, to);
}
DAG.build();
return DAG;
}
#line 2 "library/graph/reverse_graph.hpp"
template <typename T>
Graph<T, 1> reverse_graph(Graph<T, 1>& G) {
assert(G.is_directed());
Graph<T, 1> G1(G.N);
for (auto&& e: G.edges) { G1.add(e.to, e.frm, e.cost, e.id); }
G1.build();
return G1;
}
#line 7 "main.cpp"
void solve() {
LL(N, Q);
N *= 3;
Range_to_Range_Graph<bool> RRG(N);
// [a,b] に v がある -> [c,d] はすべて v
FOR(Q) {
LL(a, b, c, d);
--a, --c;
RRG.add_range_to_range(a, b, c, d, 1);
}
auto G = RRG.build();
auto [nc, comp] = strongly_connected_component(G);
vc<int> sz(nc);
FOR(v, N) sz[comp[v]]++;
auto sz_c = cumsum<int>(sz);
// suffix is true として上手くいくか?
FOR(k, nc + 1) {
int x = sz_c[k];
if (N / 3 <= x && x <= N / 3 * 2) {
// ok
string ANS;
FOR(v, N) { ANS += (comp[v] < k ? "R" : "F"); }
print("TAK");
print(ANS);
return;
}
}
auto DAG = scc_dag(G, nc, comp);
auto DAG1 = reverse_graph(DAG);
int K = max_element(all(sz)) - sz.begin();
vc<bool> dp(nc, 0), dp1(nc, 1);
dp[K] = 1;
dp1[K] = 0;
FOR(i, nc) {
if (!dp[i]) continue;
for (auto&& e: DAG[i]) dp[e.to] = 1;
}
FOR_R(i, nc) {
if (dp1[i]) continue;
for (auto&& e: DAG1[i]) dp1[e.to] = 0;
}
string ANS, ANS1;
FOR(v, N) {
ANS += (dp[comp[v]] ? "F" : "R");
ANS1 += (dp1[comp[v]] ? "F" : "R");
}
ll a = count(all(ANS), 'R');
ll a1 = count(all(ANS1), 'R');
if (N / 3 <= a && a <= N / 3 * 2) {
print("TAK");
print(ANS);
}
elif (N / 3 <= a1 && a1 <= N / 3 * 2) {
print("TAK");
print(ANS1);
}
else {
print("NIE");
}
}
signed main() {
INT(T);
FOR(T) solve();
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 0ms
memory: 3472kb
input:
2 1 3 1 1 2 2 1 2 3 3 1 1 3 3 1 3 1 1 2 2 2 2 3 3 3 3 1 1
output:
TAK RFF NIE
result:
ok good!
Test #2:
score: 0
Accepted
time: 2140ms
memory: 201960kb
input:
10 33333 100000 28701 40192 93418 95143 95902 97908 78378 78461 36823 44196 22268 23996 23977 24786 33315 48829 83965 90411 4923 8445 20235 21177 32543 47454 29598 35414 72477 73049 2014 12632 42163 46466 64305 65518 98825 99552 32331 41625 92772 96224 26500 54122 76990 77126 18249 20335 31165 36080...
output:
NIE NIE NIE NIE NIE NIE NIE NIE NIE NIE
result:
ok good!
Test #3:
score: 0
Accepted
time: 1304ms
memory: 141592kb
input:
10 33333 100000 15207 33614 66276 66276 97173 97173 67589 73960 19673 36626 65207 65207 89825 98169 27079 27079 56067 56966 7560 7560 18170 35477 18752 18752 32621 36748 34460 34460 61595 61700 14117 14117 32395 36710 9064 9064 13172 13172 1728 4640 40462 41878 47171 47171 76965 82414 5767 5767 9225...
output:
TAK FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF...
result:
ok good!
Test #4:
score: 0
Accepted
time: 1192ms
memory: 141448kb
input:
10 33333 100000 2646 2646 6430 6446 82226 82231 15128 15132 877 877 85831 88474 51389 79196 37573 37573 38030 38030 14248 14280 63032 68489 81074 81074 46468 46468 7403 7487 19864 20058 97979 97979 71640 71833 8558 8558 12121 12434 82481 82481 32901 32901 1899 2162 65312 77886 75969 75974 87983 8798...
output:
TAK FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF...
result:
ok good!
Test #5:
score: 0
Accepted
time: 465ms
memory: 3660kb
input:
87005 1 3 1 1 2 2 1 2 3 3 1 1 3 3 1 3 1 1 2 2 2 2 3 3 3 3 1 1 1 1 1 3 2 3 1 2 1 1 2 2 2 2 1 1 1 2 1 3 1 1 1 1 1 3 4 20 3 5 6 12 4 5 7 11 1 1 2 2 3 4 7 12 3 5 10 10 3 5 8 8 4 4 9 11 4 4 7 7 1 1 9 10 3 4 6 9 3 5 11 12 3 3 7 9 3 5 2 2 4 5 2 2 1 1 7 11 1 1 10 10 3 5 7 8 4 4 2 2 1 1 2 2 4 5 8 10 4 12 11 ...
output:
TAK RFF NIE TAK RFF TAK FFR NIE TAK FFRRRFFFFFFR TAK FFFFFFFFRRRR NIE TAK FFFFFRRFFFFFRRR TAK FFRRRRFFFFFF TAK FFFFFFRRRRFF TAK FFFFFFFRFFFRRRR TAK FFRRRRFFFFFF TAK FFRRFFFFFFRRFFR NIE TAK FFFFFFRRRFFR NIE TAK FRFFFRRFF NIE TAK FFFFFFRRR TAK FRRRFRFFFFFF TAK RRFFRFRFFFFFRFF TAK FFRRRRFFFFFF NIE TAK ...
result:
ok good!
Test #6:
score: 0
Accepted
time: 1788ms
memory: 358348kb
input:
10 33333 99999 60859 99999 1 60858 78724 99999 1 78723 42986 99999 1 42985 35108 99999 1 35107 63158 99999 1 63157 86977 99999 1 86976 13576 99999 1 13575 48277 99999 1 48276 89102 99999 1 89101 92657 99999 1 92656 25093 99999 1 25092 2353 99999 1 2352 81748 99999 1 81747 51216 99999 1 51215 75815 9...
output:
NIE TAK RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR...
result:
ok good!