QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#104848#5256. InsertionsmaspyAC ✓64ms26020kbC++2036.4kb2023-05-12 05:30:572023-05-12 05:31:00

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-05-12 05:31:00]
  • 评测
  • 测评结果:AC
  • 用时:64ms
  • 内存:26020kb
  • [2023-05-12 05:30:57]
  • 提交

answer

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  assert(!que.empty());
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  assert(!que.empty());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.write(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};

struct has_read_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.read(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <typename T,
            typename enable_if<has_read<T>::value>::type * = nullptr>
  inline bool read_single(T &x) {
    x.read();
    return true;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <size_t N = 0, typename T>
  void read_single_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
      auto &x = std::get<N>(t);
      read_single(x);
      read_single_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool read_single(tuple<T...> &tpl) {
    read_single_tuple(tpl);
    return true;
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <typename T,
            typename enable_if<has_write<T>::value>::type * = nullptr>
  inline void write(T x) {
    x.write();
  }
  template <class T>
  void write(const vector<T> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <size_t N = 0, typename T>
  void write_tuple(const T t) {
    if constexpr (N < std::tuple_size<T>::value) {
      if constexpr (N > 0) { write(' '); }
      const auto x = std::get<N>(t);
      write(x);
      write_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool write(tuple<T...> tpl) {
    write_tuple(tpl);
    return true;
  }
  template <class T, size_t S>
  void write(const array<T, S> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if (val < 0) {
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if (negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "library/random/base.hpp"

u64 RNG_64() {
  static uint64_t x_
      = uint64_t(chrono::duration_cast<chrono::nanoseconds>(
                     chrono::high_resolution_clock::now().time_since_epoch())
                     .count())
        * 10150724397891781847ULL;
  x_ ^= x_ << 7;
  return x_ ^= x_ >> 9;
}

u64 RNG(u64 lim) { return RNG_64() % lim; }

ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "library/mod/modint61.hpp"
struct modint61 {
  static constexpr bool is_modint = true;
  static constexpr ll mod = (1LL << 61) - 1;
  ll val;
  constexpr modint61(const ll x = 0) : val(x) {
    while (val < 0) val += mod;
    while (val >= mod) val -= mod;
  }
  bool operator<(const modint61 &other) const {
    return val < other.val;
  } // To use std::map
  bool operator==(const modint61 &p) const { return val == p.val; }
  bool operator!=(const modint61 &p) const { return val != p.val; }
  modint61 &operator+=(const modint61 &p) {
    if ((val += p.val) >= mod) val -= mod;
    return *this;
  }
  modint61 &operator-=(const modint61 &p) {
    if ((val += mod - p.val) >= mod) val -= mod;
    return *this;
  }
  modint61 &operator*=(const modint61 &p) {
    ll a = val, b = p.val;
    const ll MASK30 = (1LL << 30) - 1;
    const ll MASK31 = (1LL << 31) - 1;
    const ll MASK61 = (1LL << 61) - 1;
    ll au = a >> 31, ad = a & MASK31;
    ll bu = b >> 31, bd = b & MASK31;
    ll x = ad * bu + au * bd;
    ll xu = x >> 30, xd = x & MASK30;
    x = au * bu * 2 + xu + (xd << 31) + ad * bd;
    xu = x >> 61, xd = x & MASK61;
    x = xu + xd;
    if (x >= MASK61) x -= MASK61;
    val = x;
    return *this;
  }
  modint61 operator-() const { return modint61(get_mod() - val); }
  modint61 &operator/=(const modint61 &p) {
    *this *= p.inverse();
    return *this;
  }
  modint61 operator+(const modint61 &p) const { return modint61(*this) += p; }
  modint61 operator-(const modint61 &p) const { return modint61(*this) -= p; }
  modint61 operator*(const modint61 &p) const { return modint61(*this) *= p; }
  modint61 operator/(const modint61 &p) const { return modint61(*this) /= p; }

  modint61 inverse() const {
    ll a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint61(u);
  }
  modint61 pow(int64_t n) const {
    modint61 ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret = ret * mul;
      mul = mul * mul;
      n >>= 1;
    }
    return ret;
  }
  static constexpr ll get_mod() { return mod; }
#ifdef FASTIO
  void write() { fastio::printer.write(val); }
  void read() { fastio::scanner.read(val); }
#endif
};
#line 4 "library/string/rollinghash.hpp"

struct RollingHash {
  using mint = modint61;
  static constexpr u64 mod = mint::get_mod();
  const mint base;
  vc<mint> power;

  static inline mint generate_base() { return RNG(mod); }

  inline void expand(size_t sz) {
    if (power.size() < sz + 1) {
      int pre_sz = (int)power.size();
      power.resize(sz + 1);
      FOR(i, pre_sz - 1, sz) power[i + 1] = power[i] * base;
    }
  }

  explicit RollingHash(mint base = generate_base()) : base(base), power{1} {}

  template <typename STRING>
  vector<mint> build(const STRING& s) const {
    int sz = s.size();
    vector<mint> hashed(sz + 1);
    for (int i = 0; i < sz; i++) { hashed[i + 1] = hashed[i] * base + s[i]; }
    return hashed;
  }

  mint query(const vc<mint>& s, int l, int r) {
    expand(r - l);
    return (s[r] - s[l] * power[r - l]).val;
  }

  mint combine(mint h1, mint h2, int h2len) {
    expand(h2len);
    return h1 * power[h2len] + h2;
  }

  mint add_char(mint h, int x) { return h * base + mint(x); }

  int lcp(const vc<mint>& a, int l1, int r1, const vc<mint>& b, int l2,
          int r2) {
    int len = min(r1 - l1, r2 - l2);
    int low = 0, high = len + 1;
    while (high - low > 1) {
      int mid = (low + high) / 2;
      if (query(a, l1, l1 + mid) == query(b, l2, l2 + mid))
        low = mid;
      else
        high = mid;
    }
    return low;
  }
};
#line 2 "library/ds/segtree/dual_segtree.hpp"

template <typename Monoid>
struct Dual_SegTree {
  using MA = Monoid;
  using A = typename MA::value_type;
  int n, log, size;
  vc<A> laz;

  Dual_SegTree() : Dual_SegTree(0) {}
  Dual_SegTree(int n) { build(n); }

  void build(int m) {
    n = m;
    log = 1;
    while ((1 << log) < n) ++log;
    size = 1 << log;
    laz.assign(size << 1, MA::unit());
  }

  A get(int p) {
    assert(0 <= p && p < n);
    p += size;
    for (int i = log; i >= 1; i--) push(p >> i);
    return laz[p];
  }

  vc<A> get_all() {
    FOR(i, size) push(i);
    return {laz.begin() + size, laz.begin() + size + n};
  }

  void apply(int l, int r, const A& a) {
    assert(0 <= l && l <= r && r <= n);
    if (l == r) return;
    l += size, r += size;
    if (!MA::commute) {
      for (int i = log; i >= 1; i--) {
        if (((l >> i) << i) != l) push(l >> i);
        if (((r >> i) << i) != r) push((r - 1) >> i);
      }
    }
    while (l < r) {
      if (l & 1) all_apply(l++, a);
      if (r & 1) all_apply(--r, a);
      l >>= 1, r >>= 1;
    }
  }

private:
  void push(int k) {
    if (laz[k] == MA::unit()) return;
    all_apply(2 * k, laz[k]), all_apply(2 * k + 1, laz[k]);
    laz[k] = MA::unit();
  }
  void all_apply(int k, A a) { laz[k] = MA::op(laz[k], a); }
};
#line 2 "library/alg/monoid/add.hpp"

template <typename X>
struct Monoid_Add {
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
  static constexpr X inverse(const X &x) noexcept { return -x; }
  static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
  static constexpr X unit() { return X(0); }
  static constexpr bool commute = true;
};
#line 2 "library/string/suffix_array.hpp"

#line 2 "library/alg/monoid/min.hpp"

template <typename E>
struct Monoid_Min {
  using X = E;
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); }
  static constexpr X unit() { return infty<E>; }
  static constexpr bool commute = true;
};
#line 1 "library/ds/sparse_table/sparse_table.hpp"

// 冪等なモノイドであることを仮定。disjoint sparse table より x 倍高速
template <class Monoid>
struct Sparse_Table {
  using MX = Monoid;
  using X = typename MX::value_type;
  int n, log;
  vvc<X> dat;

  Sparse_Table() {}
  Sparse_Table(int n) { build(n); }
  template <typename F>
  Sparse_Table(int n, F f) {
    build(n, f);
  }
  Sparse_Table(const vc<X>& v) { build(v); }

  void build(int m) {
    build(m, [](int i) -> X { return MX::unit(); });
  }
  void build(const vc<X>& v) {
    build(len(v), [&](int i) -> X { return v[i]; });
  }
  template <typename F>
  void build(int m, F f) {
    n = m, log = 1;
    while ((1 << log) < n) ++log;
    dat.resize(log);
    dat[0].resize(n);
    FOR(i, n) dat[0][i] = f(i);

    FOR(i, log - 1) {
      dat[i + 1].resize(len(dat[i]) - (1 << i));
      FOR(j, len(dat[i]) - (1 << i)) {
        dat[i + 1][j] = MX::op(dat[i][j], dat[i][j + (1 << i)]);
      }
    }
  }

  X prod(int L, int R) {
    if (L == R) return MX::unit();
    if (R == L + 1) return dat[0][L];
    int k = topbit(R - L - 1);
    return MX::op(dat[k][L], dat[k][R - (1 << k)]);
  }

  template <class F>
  int max_right(const F check, int L) {
    assert(0 <= L && L <= n && check(MX::unit()));
    if (L == n) return n;
    int ok = L, ng = n + 1;
    while (ok + 1 < ng) {
      int k = (ok + ng) / 2;
      bool bl = check(prod(L, k));
      if (bl) ok = k;
      if (!bl) ng = k;
    }
    return ok;
  }

  template <class F>
  int min_left(const F check, int R) {
    assert(0 <= R && R <= n && check(MX::unit()));
    if (R == 0) return 0;
    int ok = R, ng = -1;
    while (ng + 1 < ok) {
      int k = (ok + ng) / 2;
      bool bl = check(prod(k, R));
      if (bl) ok = k;
      if (!bl) ng = k;
    }
    return ok;
  }
};
#line 5 "library/string/suffix_array.hpp"

// 辞書順 i 番目の suffix が j 文字目始まりであるとき、
// SA[i] = j, ISA[j] = i
struct Suffix_Array {
  vector<int> SA;
  vector<int> ISA;
  vector<int> LCP;
  Sparse_Table<Monoid_Min<int>> seg;
  // DisjointSparse<Monoid_Min<int>> seg;

  Suffix_Array(string& s, bool lcp_query = false) {
    char first = 127, last = 0;
    for (auto&& c: s) {
      chmin(first, c);
      chmax(last, c);
    }
    SA = calc_suffix_array(s, first, last);
    calc_LCP(s);
    if (lcp_query) seg.build(LCP);
  }

  Suffix_Array(vector<int>& s, bool lcp_query = false) {
    SA = calc_suffix_array(s);
    calc_LCP(s);
    if (lcp_query) seg.build(LCP);
  }

  // lcp(S[i:], S[j:])
  int lcp(int i, int j) {
    int n = len(SA);
    if (i == n || j == n) return 0;
    if (i == j) return n - i;
    i = ISA[i], j = ISA[j];
    if (i > j) swap(i, j);
    return seg.prod(i, j);
  }

private:
  void induced_sort(const std::vector<int>& vect, int val_range,
                    std::vector<int>& SA, const std::vector<bool>& sl,
                    const std::vector<int>& lms_idx) {
    std::vector<int> l(val_range, 0), r(val_range, 0);
    for (int c: vect) {
      if (c + 1 < val_range) ++l[c + 1];
      ++r[c];
    }
    std::partial_sum(l.begin(), l.end(), l.begin());
    std::partial_sum(r.begin(), r.end(), r.begin());
    std::fill(SA.begin(), SA.end(), -1);
    for (int i = (int)lms_idx.size() - 1; i >= 0; --i)
      SA[--r[vect[lms_idx[i]]]] = lms_idx[i];
    for (int i: SA)
      if (i >= 1 && sl[i - 1]) SA[l[vect[i - 1]]++] = i - 1;
    std::fill(r.begin(), r.end(), 0);
    for (int c: vect) ++r[c];
    std::partial_sum(r.begin(), r.end(), r.begin());
    for (int k = (int)SA.size() - 1, i = SA[k]; k >= 1; --k, i = SA[k])
      if (i >= 1 && !sl[i - 1]) { SA[--r[vect[i - 1]]] = i - 1; }
  }

  std::vector<int> SA_IS(const std::vector<int>& vect, int val_range) {
    const int n = vect.size();
    std::vector<int> SA(n), lms_idx;
    std::vector<bool> sl(n);
    sl[n - 1] = false;
    for (int i = n - 2; i >= 0; --i) {
      sl[i] = (vect[i] > vect[i + 1] || (vect[i] == vect[i + 1] && sl[i + 1]));
      if (sl[i] && !sl[i + 1]) lms_idx.push_back(i + 1);
    }
    std::reverse(lms_idx.begin(), lms_idx.end());
    induced_sort(vect, val_range, SA, sl, lms_idx);
    std::vector<int> new_lms_idx(lms_idx.size()), lms_vec(lms_idx.size());
    for (int i = 0, k = 0; i < n; ++i)
      if (!sl[SA[i]] && SA[i] >= 1 && sl[SA[i] - 1]) {
        new_lms_idx[k++] = SA[i];
      }
    int cur = 0;
    SA[n - 1] = cur;
    for (size_t k = 1; k < new_lms_idx.size(); ++k) {
      int i = new_lms_idx[k - 1], j = new_lms_idx[k];
      if (vect[i] != vect[j]) {
        SA[j] = ++cur;
        continue;
      }
      bool flag = false;
      for (int a = i + 1, b = j + 1;; ++a, ++b) {
        if (vect[a] != vect[b]) {
          flag = true;
          break;
        }
        if ((!sl[a] && sl[a - 1]) || (!sl[b] && sl[b - 1])) {
          flag = !((!sl[a] && sl[a - 1]) && (!sl[b] && sl[b - 1]));
          break;
        }
      }
      SA[j] = (flag ? ++cur : cur);
    }
    for (size_t i = 0; i < lms_idx.size(); ++i) lms_vec[i] = SA[lms_idx[i]];
    if (cur + 1 < (int)lms_idx.size()) {
      auto lms_SA = SA_IS(lms_vec, cur + 1);
      for (size_t i = 0; i < lms_idx.size(); ++i) {
        new_lms_idx[i] = lms_idx[lms_SA[i]];
      }
    }
    induced_sort(vect, val_range, SA, sl, new_lms_idx);
    return SA;
  }

  std::vector<int> calc_suffix_array(const std::string& s,
                                     const char first = 'a',
                                     const char last = 'z') {
    std::vector<int> vect(s.size() + 1);
    std::copy(std::begin(s), std::end(s), std::begin(vect));
    for (auto& x: vect) x -= (int)first - 1;
    vect.back() = 0;
    auto ret = SA_IS(vect, (int)last - (int)first + 2);
    ret.erase(ret.begin());
    return ret;
  }

  std::vector<int> calc_suffix_array(const vector<int>& s) {
    vector<int> ss = s;
    sort(ss.begin(), ss.end());
    ss.erase(unique(ss.begin(), ss.end()), ss.end());

    std::vector<int> vect(s.size() + 1);
    std::copy(std::begin(s), std::end(s), std::begin(vect));
    for (auto& x: vect)
      x = lower_bound(ss.begin(), ss.end(), x) - ss.begin() + 1;
    vect.back() = 0;
    auto ret = SA_IS(vect, *max_element(vect.begin(), vect.end()) + 2);
    ret.erase(ret.begin());
    return ret;
  }

  template <typename STRING>
  void calc_LCP(const STRING& s) {
    int n = s.size(), k = 0;
    ISA.resize(n);
    LCP.resize(n);
    for (int i = 0; i < n; i++) ISA[SA[i]] = i;
    for (int i = 0; i < n; i++, k ? k-- : 0) {
      if (ISA[i] == n - 1) {
        k = 0;
        continue;
      }
      int j = SA[ISA[i] + 1];
      while (i + k < n && j + k < n && s[i + k] == s[j + k]) k++;
      LCP[ISA[i]] = k;
    }
    LCP.resize(n - 1);
  }
};
#line 2 "library/ds/segtree/segtree.hpp"

template <class Monoid>
struct SegTree {
  using MX = Monoid;
  using X = typename MX::value_type;
  using value_type = X;
  vc<X> dat;
  int n, log, size;

  SegTree() {}
  SegTree(int n) { build(n); }
  template <typename F>
  SegTree(int n, F f) {
    build(n, f);
  }
  SegTree(const vc<X>& v) { build(v); }

  void build(int m) {
    build(m, [](int i) -> X { return MX::unit(); });
  }
  void build(const vc<X>& v) {
    build(len(v), [&](int i) -> X { return v[i]; });
  }
  template <typename F>
  void build(int m, F f) {
    n = m, log = 1;
    while ((1 << log) < n) ++log;
    size = 1 << log;
    dat.assign(size << 1, MX::unit());
    FOR(i, n) dat[size + i] = f(i);
    FOR_R(i, 1, size) update(i);
  }

  X get(int i) { return dat[size + i]; }
  vc<X> get_all() { return {dat.begin() + size, dat.begin() + size + n}; }

  void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); }
  void set(int i, const X& x) {
    assert(i < n);
    dat[i += size] = x;
    while (i >>= 1) update(i);
  }

  void multiply(int i, const X& x) {
    assert(i < n);
    i += size;
    dat[i] = Monoid::op(dat[i], x);
    while (i >>= 1) update(i);
  }

  X prod(int L, int R) {
    assert(0 <= L && L <= R && R <= n);
    X vl = Monoid::unit(), vr = Monoid::unit();
    L += size, R += size;
    while (L < R) {
      if (L & 1) vl = Monoid::op(vl, dat[L++]);
      if (R & 1) vr = Monoid::op(dat[--R], vr);
      L >>= 1, R >>= 1;
    }
    return Monoid::op(vl, vr);
  }

  X prod_all() { return dat[1]; }

  template <class F>
  int max_right(F check, int L) {
    assert(0 <= L && L <= n && check(Monoid::unit()));
    if (L == n) return n;
    L += size;
    X sm = Monoid::unit();
    do {
      while (L % 2 == 0) L >>= 1;
      if (!check(Monoid::op(sm, dat[L]))) {
        while (L < size) {
          L = 2 * L;
          if (check(Monoid::op(sm, dat[L]))) { sm = Monoid::op(sm, dat[L++]); }
        }
        return L - size;
      }
      sm = Monoid::op(sm, dat[L++]);
    } while ((L & -L) != L);
    return n;
  }

  template <class F>
  int min_left(F check, int R) {
    assert(0 <= R && R <= n && check(Monoid::unit()));
    if (R == 0) return 0;
    R += size;
    X sm = Monoid::unit();
    do {
      --R;
      while (R > 1 && (R % 2)) R >>= 1;
      if (!check(Monoid::op(dat[R], sm))) {
        while (R < size) {
          R = 2 * R + 1;
          if (check(Monoid::op(dat[R], sm))) { sm = Monoid::op(dat[R--], sm); }
        }
        return R + 1 - size;
      }
      sm = Monoid::op(dat[R], sm);
    } while ((R & -R) != R);
    return 0;
  }

  // prod_{l<=i<r} A[i xor x]
  X xor_prod(int l, int r, int xor_val) {
    static_assert(Monoid::commute);
    X x = Monoid::unit();
    for (int k = 0; k < log + 1; ++k) {
      if (l >= r) break;
      if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); }
      if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); }
      l /= 2, r /= 2, xor_val /= 2;
    }
    return x;
  }
};
#line 3 "library/ds/fenwicktree/fenwicktree.hpp"

template <typename Monoid>
struct FenwickTree {
  using G = Monoid;
  using E = typename G::value_type;
  int n;
  vector<E> dat;
  E total;

  FenwickTree() {}
  FenwickTree(int n) { build(n); }
  template <typename F>
  FenwickTree(int n, F f) {
    build(n, f);
  }
  FenwickTree(const vc<E>& v) { build(v); }

  void build(int m) {
    n = m;
    dat.assign(m, G::unit());
    total = G::unit();
  }
  void build(const vc<E>& v) {
    build(len(v), [&](int i) -> E { return v[i]; });
  }
  template <typename F>
  void build(int m, F f) {
    n = m;
    dat.clear();
    dat.reserve(n);
    total = G::unit();
    FOR(i, n) { dat.eb(f(i)); }
    for (int i = 1; i <= n; ++i) {
      int j = i + (i & -i);
      if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]);
    }
    total = prefix_sum(m);
  }

  E prod_all() { return total; }
  E sum_all() { return total; }
  E sum(int k) { return prefix_sum(k); }
  E prod(int k) { return prefix_prod(k); }
  E prefix_sum(int k) { return prefix_prod(k); }
  E prefix_prod(int k) {
    chmin(k, n);
    E ret = G::unit();
    for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]);
    return ret;
  }
  E sum(int L, int R) { return prod(L, R); }
  E prod(int L, int R) {
    chmax(L, 0), chmin(R, n);
    if (L == 0) return prefix_prod(R);
    assert(0 <= L && L <= R && R <= n);
    E pos = G::unit(), neg = G::unit();
    while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; }
    while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; }
    return G::op(pos, G::inverse(neg));
  }

  void add(int k, E x) { multiply(k, x); }
  void multiply(int k, E x) {
    static_assert(G::commute);
    total = G::op(total, x);
    for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x);
  }

  template <class F>
  int max_right(const F check) {
    assert(check(G::unit()));
    int i = 0;
    E s = G::unit();
    int k = 1;
    while (2 * k <= n) k *= 2;
    while (k) {
      if (i + k - 1 < len(dat)) {
        E t = G::op(s, dat[i + k - 1]);
        if (check(t)) { i += k, s = t; }
      }
      k >>= 1;
    }
    return i;
  }

  int kth(E k) {
    return max_right([&k](E x) -> bool { return x <= k; });
  }
};
#line 2 "library/ds/offline_query/rectangle_add_point_sum.hpp"

template <typename AbelGroup, typename XY, bool SMALL_X = false>
struct Rectangle_Add_Point_Sum {
  using G = typename AbelGroup::value_type;
  vector<tuple<XY, XY, XY, G>> rect;
  vector<tuple<int, XY, XY>> point;

  Rectangle_Add_Point_Sum() {}

  void add_query(XY x1, XY x2, XY y1, XY y2, G g) {
    rect.eb(y1, x1, x2, g), rect.eb(y2, x2, x1, g);
  }
  void sum_query(XY x, XY y) { point.eb(len(point), x, y); }

  vector<G> calc() {
    int N = rect.size(), Q = point.size();
    if (N == 0 || Q == 0) return vector<G>(Q, AbelGroup::unit());
    // X 方向の座圧
    int NX = 0;
    if (!SMALL_X) {
      sort(all(point),
           [&](auto &x, auto &y) -> bool { return get<1>(x) < get<1>(y); });
      vc<XY> keyX;
      keyX.reserve(Q);
      for (auto &&[i, a, b]: point) {
        if (len(keyX) == 0 || keyX.back() != a) { keyX.eb(a); }
        a = len(keyX) - 1;
      }
      for (auto &&[y, x1, x2, g]: rect) x1 = LB(keyX, x1), x2 = LB(keyX, x2);
      NX = len(keyX);
    }
    if (SMALL_X) {
      XY mx = infty<XY>;
      for (auto &&[i, x, y]: point) chmin(mx, x);
      for (auto &&[i, x, y]: point) x -= mx, chmax(NX, x + 1);
      for (auto &&[y, x1, x2, g]: rect) {
        x1 -= mx, x2 -= mx;
        x1 = max(0, min<int>(x1, NX)), x2 = max(0, min<int>(x2, NX));
      }
    }

    sort(all(point),
         [&](auto &x, auto &y) -> bool { return get<2>(x) < get<2>(y); });
    sort(all(rect),
         [&](auto &x, auto &y) -> bool { return get<0>(x) < get<0>(y); });
    FenwickTree<AbelGroup> bit(NX);
    vc<G> res(Q, AbelGroup::unit());
    int j = 0;
    FOR(i, Q) {
      auto [q, x, y] = point[i];
      while (j < N && get<0>(rect[j]) <= y) {
        auto [yy, x1, x2, g] = rect[j++];
        bit.add(x1, g), bit.add(x2, AbelGroup::inverse(g));
      }
      res[q] = bit.sum(x + 1);
    }
    return res;
  }
};
#line 10 "main.cpp"

void solve() {
  STR(S, T, P);
  RollingHash RH;
  auto SH = RH.build(S);
  auto TH = RH.build(T);
  auto PH = RH.build(P);
  int NS = len(S), NT = len(T), NP = len(P);
  vc<int> ANS(NS + 1);
  { // T 由来
    int base = 0;
    FOR(l, NT) {
      if (l + NP > NT) break;
      if (RH.query(TH, l, l + NP) == RH.query(PH, 0, NP)) { ++base; }
    }
    fill(all(ANS), base);
  }
  {
    Dual_SegTree<Monoid_Add<int>> seg(NS + 1);
    // S1 or S2 由来
    FOR(l, NS) {
      int r = l + NP;
      if (r > NS) break;
      if (RH.query(SH, l, r) == RH.query(PH, 0, NP)) {
        seg.apply(0, l + 1, 1);
        seg.apply(r, NS + 1, 1);
      }
    }
    auto ADD = seg.get_all();
    FOR(i, NS + 1) ANS[i] += ADD[i];
  }

  // T + S2 由来
  string X = S + "," + P;
  Suffix_Array saX(X);

  reverse(all(S));
  reverse(all(P));
  string Y = S + "," + P;
  Suffix_Array saY(Y);

  using SEG = SegTree<Monoid_Min<int>>;

  SEG segX(saX.LCP);
  SEG segY(saY.LCP);

  auto lcp_range = [&](SEG& seg, int idx, int lcp) -> pair<int, int> {
    auto check = [&](auto e) -> bool { return e >= lcp; };
    int l = seg.min_left(check, idx);
    int r = seg.max_right(check, idx);
    return {l, r + 1};
  };

  Rectangle_Add_Point_Sum<Monoid_Add<int>, int, true> RECT;

  // T + S2
  FOR(a, 1, NT + 1) {
    int b = NP - a;
    if (b <= 0) break;
    if (RH.query(TH, NT - a, NT) != RH.query(PH, 0, a)) continue;
    int idx = NS + a + 1;
    idx = saX.ISA[idx];
    auto [l, r] = lcp_range(segX, idx, b);
    RECT.add_query(l, r, -infty<int>, infty<int>, 1);
  }

  // S1 + T
  FOR(b, 1, NT + 1) {
    int a = NP - b;
    if (a <= 0) break;
    if (RH.query(TH, 0, b) != RH.query(PH, NP - b, NP)) continue;
    int idx = NS + b + 1;
    idx = saY.ISA[idx];
    auto [l, r] = lcp_range(segY, idx, a);
    RECT.add_query(-infty<int>, infty<int>, l, r, 1);
  }

  // T を真に含むパターン
  FOR(a, 1, NP + 1) {
    int b = NP - NT - a;
    if (b <= 0) break;
    if (RH.query(TH, 0, NT) != RH.query(PH, a, a + NT)) continue;
    int i = NS + (a + NT) + 1;
    i = saX.ISA[i];
    int j = NS + (b + NT) + 1;
    j = saY.ISA[j];
    auto [x1, x2] = lcp_range(segX, i, b);
    auto [y1, y2] = lcp_range(segY, j, a);
    RECT.add_query(x1, x2, y1, y2, 1);
  }
  FOR(i, NS + 1) {
    int x = (i == NS ? -1 : saX.ISA[i]);
    int y = (i == 0 ? -1 : saY.ISA[NS - i]);
    RECT.sum_query(x, y);
  }
  auto vals = RECT.calc();
  FOR(i, len(vals)) ANS[i] += vals[i];

  int ma = MAX(ANS);
  vc<int> I;
  FOR(i, NS + 1) if (ANS[i] == ma) I.eb(i);

  print(ma, len(I), I[0], I.back());
}

signed main() {
  solve();
  return 0;
}

詳細信息

Test #1:

score: 100
Accepted
time: 2ms
memory: 3448kb

input:

rrddrrrdd
ddrrd
rrddrr

output:

2 2 6 7

result:

ok 4 number(s): "2 2 6 7"

Test #2:

score: 0
Accepted
time: 2ms
memory: 3508kb

input:

z
zzkkzzkk
z

output:

5 2 0 1

result:

ok 4 number(s): "5 2 0 1"

Test #3:

score: 0
Accepted
time: 2ms
memory: 3516kb

input:

wgwwggggw
g
gggg

output:

2 5 4 8

result:

ok 4 number(s): "2 5 4 8"

Test #4:

score: 0
Accepted
time: 2ms
memory: 3492kb

input:

q
uuquu
u

output:

4 2 0 1

result:

ok 4 number(s): "4 2 0 1"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3536kb

input:

gpgggpppg
pg
gpgg

output:

2 1 4 4

result:

ok 4 number(s): "2 1 4 4"

Test #6:

score: 0
Accepted
time: 2ms
memory: 3504kb

input:

p
xpxp
p

output:

3 2 0 1

result:

ok 4 number(s): "3 2 0 1"

Test #7:

score: 0
Accepted
time: 2ms
memory: 3536kb

input:

aacaacacaa
ca
caca

output:

2 5 2 9

result:

ok 4 number(s): "2 5 2 9"

Test #8:

score: 0
Accepted
time: 2ms
memory: 3504kb

input:

k
kekekkekk
k

output:

7 2 0 1

result:

ok 4 number(s): "7 2 0 1"

Test #9:

score: 0
Accepted
time: 2ms
memory: 3608kb

input:

ghhhhg
g
ghhg

output:

2 1 3 3

result:

ok 4 number(s): "2 1 3 3"

Test #10:

score: 0
Accepted
time: 1ms
memory: 3532kb

input:

b
xbb
b

output:

3 2 0 1

result:

ok 4 number(s): "3 2 0 1"

Test #11:

score: 0
Accepted
time: 0ms
memory: 3608kb

input:

nddnnndndn
dnd
ndndn

output:

3 1 5 5

result:

ok 4 number(s): "3 1 5 5"

Test #12:

score: 0
Accepted
time: 0ms
memory: 3508kb

input:

imiimmmm
miimi
i

output:

6 9 0 8

result:

ok 4 number(s): "6 9 0 8"

Test #13:

score: 0
Accepted
time: 2ms
memory: 3444kb

input:

gzzzzzzzzz
zgzzzg
gzgggzzz

output:

0 11 0 10

result:

ok 4 number(s): "0 11 0 10"

Test #14:

score: 0
Accepted
time: 2ms
memory: 3512kb

input:

m
mmwmwmw
wwmww

output:

0 2 0 1

result:

ok 4 number(s): "0 2 0 1"

Test #15:

score: 0
Accepted
time: 2ms
memory: 3452kb

input:

jmmmmjmmj
jmjjjmjm
mjmmmmjj

output:

0 10 0 9

result:

ok 4 number(s): "0 10 0 9"

Test #16:

score: 0
Accepted
time: 1ms
memory: 3448kb

input:

f
ffffwff
wffw

output:

0 2 0 1

result:

ok 4 number(s): "0 2 0 1"

Test #17:

score: 0
Accepted
time: 0ms
memory: 3528kb

input:

plpll
llplll
pppppppl

output:

0 6 0 5

result:

ok 4 number(s): "0 6 0 5"

Test #18:

score: 0
Accepted
time: 2ms
memory: 3496kb

input:

yypppypyy
ppyyypppy
ypyppypp

output:

0 10 0 9

result:

ok 4 number(s): "0 10 0 9"

Test #19:

score: 0
Accepted
time: 1ms
memory: 3436kb

input:

okkkkkok
okokkkoo
kookooko

output:

0 9 0 8

result:

ok 4 number(s): "0 9 0 8"

Test #20:

score: 0
Accepted
time: 0ms
memory: 3536kb

input:

ccc
cpppp
cc

output:

3 1 3 3

result:

ok 4 number(s): "3 1 3 3"

Test #21:

score: 0
Accepted
time: 2ms
memory: 3768kb

input:

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy...

output:

631 1000 0 999

result:

ok 4 number(s): "631 1000 0 999"

Test #22:

score: 0
Accepted
time: 2ms
memory: 3672kb

input:

annnnnnnnnnnnnnnnnnnnannnnnannannnnnnnnnannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnannnnnnnnannnnnnnnnnnnnnnnnnnnnnnnnnannnannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnannnnnnnnnnnnnnnnnnnnnnaannnnnnannnnnnnnnnnnnnnnnnnannnnnnnnnnnnnnnnnnnnnannnannnnnnnnnannannnnnnnnannnnnnnannannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnan...

output:

0 1000 0 999

result:

ok 4 number(s): "0 1000 0 999"

Test #23:

score: 0
Accepted
time: 0ms
memory: 3596kb

input:

atatatataaaaaattattaaataataaaatttattattaaaataaattaaatattaaaataaaattatataatttaatattttattaatatattattatttaaattttaaaaattaaattttttaatttaattatttaaaataatttttattaaatttatttatattataaatttattataaatatttatatattttttatattatattatttaatttttttaaaatttaattttatttattttattatatataatttaaaataatttttttaaaaatattattttatttaaaatatat...

output:

0 1000 0 999

result:

ok 4 number(s): "0 1000 0 999"

Test #24:

score: 0
Accepted
time: 1ms
memory: 3644kb

input:

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww...

output:

1 413 587 999

result:

ok 4 number(s): "1 413 587 999"

Test #25:

score: 0
Accepted
time: 3ms
memory: 3712kb

input:

rlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrlrl...

output:

315 2 1 998

result:

ok 4 number(s): "315 2 1 998"

Test #26:

score: 0
Accepted
time: 2ms
memory: 3676kb

input:

huhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuuuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhu...

output:

260 1 113 113

result:

ok 4 number(s): "260 1 113 113"

Test #27:

score: 0
Accepted
time: 3ms
memory: 3772kb

input:

pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp...

output:

748 907 0 906

result:

ok 4 number(s): "748 907 0 906"

Test #28:

score: 0
Accepted
time: 2ms
memory: 3668kb

input:

kkkkkkkkkkkkkkkkkkkkkkkkpkkkkkkkkkpkppkkkkkkpkkkkkkkkkkkkkkkpkkkkkkkkkkkppkkpkkkkkkkkkkkpkkpkpkkpkkkkkpkkkkkkkkkkkkkkkkkkkkkkkkpkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkpkkkkkpkkkkkkkkkkkkkkkkkkkkkkkpkkkkkkkkkkkkkkkpkpkkkkkkkpkkkkkkkkkkkkkkkkkkkkkpkkkkkkkkkkkkkkpkkkkkkpkkkkkkkkkkkkkkkkkkkpkkkpkkkkkpkkkkkkkpkpk...

output:

0 907 0 906

result:

ok 4 number(s): "0 907 0 906"

Test #29:

score: 0
Accepted
time: 1ms
memory: 3656kb

input:

illillliiiiiilliiilliiilliliilililiililiiililililliliililiillilliliiiiiliiillllllllilliiilililiililililliiiliiililiillillliliiiliiliiliililllliiliiililiilllilllllliiliiiillilillllllillllililililliiiiliilliililllllilliliiiiilililiiiillliiillliililllilliiiiiilliilllllllliillllliiiiiiilliiliilllliiliil...

output:

0 907 0 906

result:

ok 4 number(s): "0 907 0 906"

Test #30:

score: 0
Accepted
time: 2ms
memory: 3792kb

input:

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii...

output:

1 702 0 701

result:

ok 4 number(s): "1 702 0 701"

Test #31:

score: 0
Accepted
time: 2ms
memory: 3628kb

input:

mymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymymy...

output:

374 454 0 906

result:

ok 4 number(s): "374 454 0 906"

Test #32:

score: 0
Accepted
time: 1ms
memory: 3720kb

input:

kckckckckckckckckckckckckckckckckckckckckckckckccckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckckc...

output:

291 370 50 788

result:

ok 4 number(s): "291 370 50 788"

Test #33:

score: 0
Accepted
time: 2ms
memory: 3836kb

input:

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii...

output:

937 966 0 965

result:

ok 4 number(s): "937 966 0 965"

Test #34:

score: 0
Accepted
time: 1ms
memory: 3692kb

input:

apaaaaaaaaaaaaaaaaaapaaaaaaaaaaaaaapapaaaaaapaaaaaaaapaaaaaaaaaaaaaaaaaaaaaaaaaaapaaaaaaaapaaaaaaaaaaaaaaaaapaaaaaaaaaaaaaaapaaaapapappaaaaaaaapaaappaaaapaapapaaaaaaapaaaappaaapaaaaaaaaaaaaaaaaaaaaaaaaaaaaaapaaaaaapaaaaaaaapaaaapppaapaaaaaaaaaaaapppaapaaaaaaaaaaaaaaaaaaaaaaapaaaaaaaaaaaaaaaaaaaaaaaa...

output:

35 64 600 663

result:

ok 4 number(s): "35 64 600 663"

Test #35:

score: 0
Accepted
time: 0ms
memory: 3580kb

input:

msmmssmmsmmmsmssmmmmmsmmmsmssssssssmmmmssmmsmmsmmmsmssmmmmsssmmsmmmssmssmsmmmsmssmsmmmsmmmsmssmsssmmssssmmmssmmssssmsmsmsmmmsmsmmsmsmssssssssmmmmmmsmmmsssmmmssssssssssmmmmssmsmsmmsmssssssssmmsmmsssmssmmmssssmsssmssmssmsmsmsmsmmsmmssmmsmmsmsmmssmmssmsmssmsssmsmsmsmmmmsmssmmmmsmmssmmmssssmsssssmmssmmm...

output:

0 966 0 965

result:

ok 4 number(s): "0 966 0 965"

Test #36:

score: 0
Accepted
time: 2ms
memory: 3776kb

input:

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn...

output:

1 768 0 767

result:

ok 4 number(s): "1 768 0 767"

Test #37:

score: 0
Accepted
time: 2ms
memory: 3704kb

input:

jrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjrjr...

output:

468 483 0 964

result:

ok 4 number(s): "468 483 0 964"

Test #38:

score: 0
Accepted
time: 1ms
memory: 3660kb

input:

dkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkkkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdk...

output:

429 443 80 964

result:

ok 4 number(s): "429 443 80 964"

Test #39:

score: 0
Accepted
time: 42ms
memory: 25932kb

input:

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt...

output:

44459 99774 0 99773

result:

ok 4 number(s): "44459 99774 0 99773"

Test #40:

score: 0
Accepted
time: 64ms
memory: 26020kb

input:

annnannnnnnnnnnnnnnnnnnnannnnnnnnnnannnnnnnnnnnnnnannananannnnnnnnnnnnnnnnannnnnnnnnnnnnnnnnannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnannnnannnnnnnnnnnnnnnannnnnnnnnnnnnnnnnnnnannnnnnnnnnnnnnnnannnnnnnnnnnnnnnnnnnnannnnnnnaannnnnnnnnnnnnnnnnnnnnannannnnnnnnnnnnannnannnnnnnnannnnnnnnnnnnnnnnnnnnnannnannnaannan...

output:

0 99774 0 99773

result:

ok 4 number(s): "0 99774 0 99773"

Test #41:

score: 0
Accepted
time: 54ms
memory: 18576kb

input:

eyyeeeyyeyyeyeyyeyeeyyyyeeeeeyyyyeeeeyyyyyyyyyyyeeeeeeeeyeyyyeyyeeyyyeeyeeeeyeeyeeeeeeyyyeeyeeyeeeyyeyeyyeyyeyeyyyeyyeeeeeyeyyyyyeyyeyeyeeyyyyyeeyeyeeeyeeeyyyeeyeeyyyeeyyyeeyeyyeeeeyeyeeeyyeeyyeyeyyeeyyeyyyyeeeyyyeyyyeyyeeyeeeeeeyyyeyeyeyeeeeeyeyeyeyyeyeyyyyyyeyeeyeyyyeeeyeeyyeeyyyeyeyeyeyyyyyyeeeey...

output:

0 99774 0 99773

result:

ok 4 number(s): "0 99774 0 99773"

Test #42:

score: 0
Accepted
time: 37ms
memory: 21700kb

input:

ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss...

output:

1 61041 38733 99773

result:

ok 4 number(s): "1 61041 38733 99773"

Test #43:

score: 0
Accepted
time: 57ms
memory: 21676kb

input:

zqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzqzq...

output:

22229 2 1 99772

result:

ok 4 number(s): "22229 2 1 99772"

Test #44:

score: 0
Accepted
time: 48ms
memory: 21692kb

input:

babababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababa...

output:

22229 2 1 99772

result:

ok 4 number(s): "22229 2 1 99772"

Test #45:

score: 0
Accepted
time: 52ms
memory: 25060kb

input:

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll...

output:

85548 90750 0 90749

result:

ok 4 number(s): "85548 90750 0 90749"

Test #46:

score: 0
Accepted
time: 60ms
memory: 25104kb

input:

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbobbobbbbbobbbobbbbbbbbbbbbbbbbbbobbbbbbbbbbbbbbobbbbbbbbbbbobbbbbbbboobbobbbbbbbbbbobbbbbbbbbbbbbbbobbbbobbbbbbbbbbbbobbbbbbbbbbbbbbbbbbbbobbbbbbbbbbbbbobbbbbbbbbbbbbbbbboobbbbbobbbbbbbbbbbbbbbbbobbbbbbbbbbbbbbbbbbbbbbbbobbbobobbobbbbbbbbbbbbbbbbbbobbbbbbbobbbbbb...

output:

0 90750 0 90749

result:

ok 4 number(s): "0 90750 0 90749"

Test #47:

score: 0
Accepted
time: 49ms
memory: 18548kb

input:

llrlrrlrlrrllrrrrrlrlrlllllrrrrllrllrrllllrrlrlrllllllrrrlrllllllrrrlrrrrlrlrllrrrrrrrrlrlrrrlrrlrlllllrllrllrlrlllrrrrllllllllllrrrllrrlllrlrllrrrlllrrllrrrlllrlrlrlrlrlrllrlrrrrrrlrlrrllrrrrrrllrllrrlrlrlllrrrlrrrlrrrrrrrrrlrlllrlrlrlrlrllllrlrrrrrlllrlllrlrrlrrrlrlrllrrrrlllllllrllrlrlllllrrrrrrr...

output:

0 90750 0 90749

result:

ok 4 number(s): "0 90750 0 90749"

Test #48:

score: 0
Accepted
time: 37ms
memory: 21756kb

input:

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll...

output:

1 71220 19530 90749

result:

ok 4 number(s): "1 71220 19530 90749"

Test #49:

score: 0
Accepted
time: 56ms
memory: 22520kb

input:

qoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqoqo...

output:

42774 45375 0 90748

result:

ok 4 number(s): "42774 45375 0 90748"

Test #50:

score: 0
Accepted
time: 54ms
memory: 22484kb

input:

xtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxtxt...

output:

40492 43093 2508 88692

result:

ok 4 number(s): "40492 43093 2508 88692"

Test #51:

score: 0
Accepted
time: 44ms
memory: 25324kb

input:

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...

output:

97181 91251 0 91250

result:

ok 4 number(s): "97181 91251 0 91250"

Test #52:

score: 0
Accepted
time: 47ms
memory: 25352kb

input:

vvvvvvvvvvvvvvvvvvmmvvvvvvvvvvvvvmvvvvvvvvvvvvvvvvvvvvvvmvvvvvvvmvvvvvvvvvvvvvvvvvvvvvvvvvvvvvmvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvmvvvvvvvvvmvvvvvvvmvvvvvvmvvmvmvmvmvvvvvvvvvvvvvvvvvvvvvvvvvvvmvvvvvvvvvvvvvvvvvvvvvmvvvvvvvvvvvvvvvvvmvmvvvvvvvvvvmmvvvvvvvvvvvvvvvmvvmvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv...

output:

6028 98 22809 22906

result:

ok 4 number(s): "6028 98 22809 22906"

Test #53:

score: 0
Accepted
time: 42ms
memory: 17808kb

input:

qxqxqxxxxqxqxqqxqqqxqxxxqxqqxxxxqqqqqxxqqxqqqxxxqxxqqxxqxqqxxxxqxxqxqqqxxqqxxqqxqxxxxxxqxqqqqqxxqxqqxxqxqqxxxxxxqxqxqxqqqqqqxxqqqxqqqqqqxqxxqqqxxxqxxqxqqqxxxxqxxxxqqqxxxxqqxqxqqxxqqqqqxqxxqxxxxqxxxxxqqqxxqqqqxqxqqqxqxxxxxqxxqxqqxqxqxxqqqxqqqqxxxxxqxxqxxqqxqxqxqqqqxqxqxqxxxxqxxqqxqqxqqxxxxxqqxxqxqqqq...

output:

0 91251 0 91250

result:

ok 4 number(s): "0 91251 0 91250"

Test #54:

score: 0
Accepted
time: 40ms
memory: 21204kb

input:

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww...

output:

1 4772 86479 91250

result:

ok 4 number(s): "1 4772 86479 91250"

Test #55:

score: 0
Accepted
time: 46ms
memory: 21204kb

input:

lglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglglg...

output:

48590 45626 0 91250

result:

ok 4 number(s): "48590 45626 0 91250"

Test #56:

score: 0
Accepted
time: 38ms
memory: 21244kb

input:

ibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibib...

output:

22317 19352 36850 75552

result:

ok 4 number(s): "22317 19352 36850 75552"

Test #57:

score: 0
Accepted
time: 2ms
memory: 3448kb

input:

abbababa
babbba
bbab

output:

2 6 1 7

result:

ok 4 number(s): "2 6 1 7"

Test #58:

score: 0
Accepted
time: 1ms
memory: 3484kb

input:

ababbabaabbabbbabbaabababaaababaabaaababbbbabababbbbaaabbbabbbbaaabbbbbbbbaabaabaabbaaababbbbbabbbba
aabaaababaabaabababbbaaabbbbbbaabaabaaabbaaabababbaabbaabbab
abbbbaabaa

output:

1 7 43 99

result:

ok 4 number(s): "1 7 43 99"