QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#104787 | #6132. Repair the Artwork | YaoBIG | TL | 40ms | 7320kb | C++17 | 5.2kb | 2023-05-11 23:17:54 | 2023-05-11 23:17:58 |
Judging History
answer
#include "bits/stdc++.h"
#define rep(i, a, n) for (auto i = a; i <= (n); ++i)
#define revrep(i, a, n) for (auto i = n; i >= (a); --i)
#define all(a) a.begin(), a.end()
#define sz(a) (int)(a).size()
template<class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T &a, T b) { if (b < a) { a = b; return 1; } return 0; }
using namespace std;
template<class A, class B> string to_string(const pair<A, B> &p);
template<class A, class B, class C> string to_string(const tuple<A, B, C> &p);
template<class A, class B, class C, class D> string to_string(const tuple<A, B, C, D> &p);
string to_string(const string &s) { return '"' + s + '"'; }
string to_string(const char *s) { return to_string((string) s); }
string to_string(char c) { return "'" + string(1, c) + "'"; }
string to_string(bool x) { return x ? "true" : "false"; }
template<class A> string to_string(const A &v) {
bool first = 1;
string res = "{";
for (const auto &x: v) {
if (!first) res += ", ";
first = 0;
res += to_string(x);
}
res += "}";
return res;
}
template<class A, class B> string to_string(const pair<A, B> &p) {
return "(" + to_string(p.first) + ", " + to_string(p.second) + ")";
}
template<class A, class B, class C> string to_string(const tuple<A, B, C> &p) {
return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ")";
}
template<class A, class B, class C, class D> string to_string(const tuple<A, B, C, D> &p) {
return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ", " + to_string(get<3>(p)) + ")";
}
void debug_out() { cerr << endl; }
template<class H, class... T> void debug_out(const H& h, const T&... t) {
cerr << " " << to_string(h);
debug_out(t...);
}
#ifndef ONLINE_JUDGE
#define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__)
#else
#define debug(...) if (0) puts("No effect.")
#endif
using ll = long long;
using pii = pair<int, int>;
using vi = vector<int>;
using vvi = vector<vi>;
/**
* Author: Yuhao Yao
* Date: 23-05-11
* Description: Modular integer with $mod \le 2^{31} - 1$. Note that there are several advantages to use this code:
1. You do not need to keep writing $\%\, mod$;
2. It is good to use this struct when doing Gaussian Elimination / Fast Walsh-Hadamard Transform;
3. Sometimes the input number is greater than $mod$ and this code handles it.
Do not write things like $mint\{1 / 3\}.pow(10)$ since $1 / 3$ simply equals $0$.
Do not write things like $mint\{a * b\}$ where $a$ and $b$ are int since you might first have integer overflow.
* Usage: Define the followings globally:
const int mod = 998244353;
using mint = MInt<mod>;
* Status: tested on https://ac.nowcoder.com/acm/contest/33191/F.
*/
template<const unsigned &mod>
struct MInt {
using Z = MInt;
unsigned x; /// start-hash
MInt(ll a = 0): x(a % mod + mod) { if (x >= mod) x -= mod; }
explicit operator int() const { return x; }
Z& operator +=(Z b) { x += b.x; if (x >= mod) x -= mod; return *this; }
Z& operator -=(Z b) { x += mod - b.x; if (x >= mod) x -= mod; return *this; }
Z& operator *=(Z b) { x = 1ll * x * b.x % mod; return *this; }
friend Z operator +(Z a, Z b) { return a += b; }
friend Z operator -(Z a, Z b) { return a -= b; }
friend Z operator -(Z a) { return Z{} - a; }
friend Z operator *(Z a, Z b) { return a *= b; }
/// end-hash
// the followings are for ntt and polynomials.
Z pow(ll k) const { /// start-hash
Z res = 1, a = *this;
for (; k; k >>= 1, a = a * a) if (k & 1) res = res * a;
return res;
}
Z& operator /=(Z b) {
assert(b.x != 0);
return *this *= b.pow(mod - 2);
}
friend Z operator /(Z a, Z b) { return a /= b; }
friend bool operator ==(Z a, Z b) { return a.x == b.x; }
friend bool operator !=(Z a, Z b) { return a.x != b.x; }
friend bool operator <(Z a, Z b) { return a.x < b.x; }
static unsigned getMod() { return mod; } // ntt need this.
/// end-hash
friend istream &operator >>(istream &is, Z &a) {
ll v; is >> v;
a = v;
return is;
}
friend string to_string(Z a) { return to_string(a.x); }
};
int main() {
ios::sync_with_stdio(0); cin.tie(0);
static const unsigned mod = 1e9 + 7;
using mint = MInt<mod>;
int cas; cin >> cas; while (cas--) {
int n, m; cin >> n >> m;
vi as(n);
for (auto &x: as) cin >> x;
vector dp(n + 1, vector(n * (n + 1) / 2 + 1, vector<mint>(2, 0))), ndp(dp);
dp[0][0][0] = 1;
rep(p, 0, n - 1) {
int num = as[p];
rep(i, 0, p + 1) rep(j, 0, (p + 1) * (p + 2) / 2) rep(k, 0, 1) ndp[i][j][k] = 0;
if (num == 0 || num == 2) {
rep(i, 0, p) rep(j, 0, p * (p + 1) / 2) rep(k, 0, 1) ndp[i][j][k] += dp[i][j][k];
}
if (num == 1 || num == 2) {
rep(i, 0, p) rep(j, 0, p * (p + 1) / 2) rep(k, 0, 1) if (dp[i][j][k] != 0) {
ndp[p + 1][j + (p - i) * (p - i + 1) / 2][k ^ (num == 2)] += dp[i][j][k];
}
}
swap(dp, ndp);
}
mint ans = 0;
rep(i, 0, n) rep(j, 0, n * (n + 1) / 2) rep(k, 0, 1) if (dp[i][j][k] != 0) {
int nj = j + (n - i) * (n - i + 1) / 2;
int sgn = k == 0 ? 1 : -1;
ans += sgn * mint{nj}.pow(m) * dp[i][j][k];
}
printf("%d\n", (int) ans);
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 2ms
memory: 3688kb
input:
3 2 2 2 0 3 2 2 1 0 3 1 2 1 0
output:
8 3 1
result:
ok 3 number(s): "8 3 1"
Test #2:
score: 0
Accepted
time: 40ms
memory: 7320kb
input:
100 2 1 0 1 2 1 2 1 2 1 1 1 1 6 2 1 14 2 3 12 2 2 2 6 13 2 2 0 2 0 2 7 14 0 0 0 0 2 2 0 5 8 2 2 0 0 0 5 5 2 2 0 0 0 12 3 0 2 0 2 2 0 1 2 2 2 2 0 7 11 2 2 0 1 0 1 0 4 4 2 1 2 2 7 5 1 1 0 0 1 0 0 2 14 2 1 15 17 2 2 1 2 0 0 0 0 2 0 1 0 0 0 0 15 11 1 1 2 0 1 2 0 0 1 0 2 1 1 1 1 15 18 1 0 1 0 2 2 1 2 0 1...
output:
1 1 0 1 1 175715347 833406719 467966815 458805426 650344 2208 537089254 146 7776 1 703335050 123067364 355668256 487954758 53774922 544070885 436748805 369291507 760487845 513270785 501075264 487417783 464534262 979007529 137956839 143317512 648268264 851188473 702545117 946416372 595191705 35054850...
result:
ok 100 numbers
Test #3:
score: -100
Time Limit Exceeded
input:
1000 20 673037423 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 774964932 2 2 2 17 730319736 2 2 1 1 2 2 2 2 2 2 2 2 2 1 2 2 1 11 893285699 2 2 2 1 2 1 2 2 2 1 2 16 98149251 1 2 1 2 1 2 1 1 2 1 2 2 2 2 1 2 7 556953277 1 2 2 1 2 2 2 3 228111342 1 1 1 11 640995044 2 2 1 1 2 2 1 1 1 1 1 19 741419324 1 1 2 ...
output:
447486147 204414804 452414918 684654914 763978130 805973365 0 922180033 214948715 401017738 0 201368027 752718484 611006275 848004989 391560729 950934074 202096866 443534870 24665646 482580424 321199514 922369975 152629767 5546104 1 194145234 1 1 1 562381239 648246425 497517379 217016206 961507095 4...