QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#104786#6132. Repair the ArtworkYaoBIGTL 101ms7280kbC++175.2kb2023-05-11 23:15:242023-05-11 23:15:28

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-05-11 23:15:28]
  • 评测
  • 测评结果:TL
  • 用时:101ms
  • 内存:7280kb
  • [2023-05-11 23:15:24]
  • 提交

answer

#include "bits/stdc++.h"
#define rep(i, a, n) for (auto i = a; i <= (n); ++i)
#define revrep(i, a, n) for (auto i = n; i >= (a); --i)
#define all(a) a.begin(), a.end()
#define sz(a) (int)(a).size()
template<class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T &a, T b) { if (b < a) { a = b; return 1; } return 0; }
using namespace std;

template<class A, class B> string to_string(const pair<A, B> &p);
template<class A, class B, class C> string to_string(const tuple<A, B, C> &p);
template<class A, class B, class C, class D> string to_string(const tuple<A, B, C, D> &p);
string to_string(const string &s) { return '"' + s + '"'; }
string to_string(const char *s) { return to_string((string) s); }
string to_string(char c) { return "'" + string(1, c) + "'"; }
string to_string(bool x) { return x ? "true" : "false"; }
template<class A> string to_string(const A &v) {
	bool first = 1;
	string res = "{";
	for (const auto &x: v) {
		if (!first) res += ", ";
		first = 0;
		res += to_string(x);
	}
	res += "}";
	return res;
}
template<class A, class B> string to_string(const pair<A, B> &p) {
	return "(" + to_string(p.first) + ", " + to_string(p.second) + ")";
}
template<class A, class B, class C> string to_string(const tuple<A, B, C> &p) {
	return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ")";
}
template<class A, class B, class C, class D> string to_string(const tuple<A, B, C, D> &p) {
	return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ", " + to_string(get<3>(p)) + ")";
}

void debug_out() { cerr << endl; }
template<class H, class... T> void debug_out(const H& h, const T&... t) {
	cerr << " " << to_string(h);
	debug_out(t...);
}
#ifndef ONLINE_JUDGE
	#define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__)
#else
	#define debug(...) if (0) puts("No effect.")
#endif

using ll = long long;
using pii = pair<int, int>;
using vi = vector<int>;
using vvi = vector<vi>;

/**
 * Author: Yuhao Yao
 * Date: 23-05-11
 * Description: Modular integer with $mod \le 2^{31} - 1$. Note that there are several advantages to use this code:
   1. You do not need to keep writing $\%\, mod$;
   2. It is good to use this struct when doing Gaussian Elimination / Fast Walsh-Hadamard Transform;
   3. Sometimes the input number is greater than $mod$ and this code handles it.
  Do not write things like $mint\{1 / 3\}.pow(10)$ since $1 / 3$ simply equals $0$.
  Do not write things like $mint\{a * b\}$ where $a$ and $b$ are int since you might first have integer overflow.
 * Usage: Define the followings globally:
   const int mod = 998244353;
   using mint = MInt<mod>;
 * Status: tested on https://ac.nowcoder.com/acm/contest/33191/F.
 */
template<const unsigned &mod>
struct MInt {
	using Z = MInt;
	unsigned x; /// start-hash
	MInt(ll a = 0): x(a % mod + mod) { if (x >= mod) x -= mod; }
	explicit operator int() const { return x; }

	Z& operator +=(Z b) { x += b.x; if (x >= mod) x -= mod; return *this; }
	Z& operator -=(Z b) { x += mod - b.x; if (x >= mod) x -= mod; return *this; }
	Z& operator *=(Z b) { x = 1ll * x * b.x % mod; return *this; }
	friend Z operator +(Z a, Z b) { return a += b; }
	friend Z operator -(Z a, Z b) { return a -= b; }
	friend Z operator -(Z a) { return Z{} - a; }
	friend Z operator *(Z a, Z b) { return a *= b; }
	/// end-hash

	// the followings are for ntt and polynomials.
	Z pow(ll k) const { /// start-hash
		Z res = 1, a = *this;
		for (; k; k >>= 1, a = a * a) if (k & 1) res = res * a;
		return res;
	}
	Z& operator /=(Z b) {
		assert(b.x != 0);
		return *this *= b.pow(mod - 2);
	}
	friend Z operator /(Z a, Z b) { return a /= b; }
	friend bool operator ==(Z a, Z b) { return a.x == b.x; }
	friend bool operator !=(Z a, Z b) { return a.x != b.x; }
	friend bool operator <(Z a, Z b) { return a.x < b.x; }

	static unsigned getMod() { return mod; } // ntt need this.
	/// end-hash

	friend istream &operator >>(istream &is, Z &a) {
		ll v; is >> v;
		a = v;
		return is;
	}
	friend string to_string(Z a) { return to_string(a.x); }
};

int main() {
	ios::sync_with_stdio(0); cin.tie(0);
	static const unsigned mod = 1e9 + 7;
	using mint = MInt<mod>;

	int cas; cin >> cas; while (cas--) {
		int n, m; cin >> n >> m;
		vi as(n);
		for (auto &x: as) cin >> x;
		vector dp(1, vector(1, vector<mint>(2, 0)));
		dp[0][0][0] = 1;
		rep(p, 0, n - 1) {
			int num = as[p];
			vector ndp(p + 2, vector((p + 1) * (p + 2) / 2 + 1, vector<mint>(2, 0)));
			if (num == 0 || num == 2) {
				rep(i, 0, p) rep(j, 0, p * (p + 1) / 2) rep(k, 0, 1) ndp[i][j][k] += dp[i][j][k];
			}
			if (num == 1 || num == 2) {
				rep(i, 0, p) rep(j, 0, p * (p + 1) / 2) rep(k, 0, 1) if (dp[i][j][k] != 0) {
					ndp[p + 1][j + (p - i) * (p - i + 1) / 2][k ^ (num == 2)] += dp[i][j][k];
				}
			}
			swap(dp, ndp);
		}
		mint ans = 0;
		rep(i, 0, n) rep(j, 0, n * (n + 1) / 2) rep(k, 0, 1) if (dp[i][j][k] != 0) {
			int nj = j + (n - i) * (n - i + 1) / 2;
			int sgn = k == 0 ? 1 : -1;
			ans += sgn * mint{nj}.pow(m) * dp[i][j][k];
		}
		printf("%d\n", (int) ans);
 	}
	return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 2ms
memory: 3616kb

input:

3
2 2
2 0
3 2
2 1 0
3 1
2 1 0

output:

8
3
1

result:

ok 3 number(s): "8 3 1"

Test #2:

score: 0
Accepted
time: 101ms
memory: 7280kb

input:

100
2 1
0 1
2 1
2 1
2 1
1 1
1 6
2
1 14
2
3 12
2 2 2
6 13
2 2 0 2 0 2
7 14
0 0 0 0 2 2 0
5 8
2 2 0 0 0
5 5
2 2 0 0 0
12 3
0 2 0 2 2 0 1 2 2 2 2 0
7 11
2 2 0 1 0 1 0
4 4
2 1 2 2
7 5
1 1 0 0 1 0 0
2 14
2 1
15 17
2 2 1 2 0 0 0 0 2 0 1 0 0 0 0
15 11
1 1 2 0 1 2 0 0 1 0 2 1 1 1 1
15 18
1 0 1 0 2 2 1 2 0 1...

output:

1
1
0
1
1
175715347
833406719
467966815
458805426
650344
2208
537089254
146
7776
1
703335050
123067364
355668256
487954758
53774922
544070885
436748805
369291507
760487845
513270785
501075264
487417783
464534262
979007529
137956839
143317512
648268264
851188473
702545117
946416372
595191705
35054850...

result:

ok 100 numbers

Test #3:

score: -100
Time Limit Exceeded

input:

1000
20 673037423
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 774964932
2 2 2
17 730319736
2 2 1 1 2 2 2 2 2 2 2 2 2 1 2 2 1
11 893285699
2 2 2 1 2 1 2 2 2 1 2
16 98149251
1 2 1 2 1 2 1 1 2 1 2 2 2 2 1 2
7 556953277
1 2 2 1 2 2 2
3 228111342
1 1 1
11 640995044
2 2 1 1 2 2 1 1 1 1 1
19 741419324
1 1 2 ...

output:

447486147
204414804
452414918
684654914
763978130
805973365
0
922180033
214948715
401017738
0
201368027
752718484
611006275
848004989
391560729
950934074
202096866
443534870
24665646
482580424
321199514
922369975
152629767
5546104
1
194145234
1
1
1
562381239
648246425
497517379
217016206
961507095
4...

result: