QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#104564 | #6353. Kth Lex Min Min Min Subpalindromes | maspy | AC ✓ | 301ms | 30424kb | C++20 | 17.7kb | 2023-05-11 02:03:18 | 2023-05-11 02:03:21 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
assert(!que.empty());
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
assert(!que.empty());
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>
namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
template <class T>
static auto check(T &&x) -> decltype(x.write(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};
struct has_read_impl {
template <class T>
static auto check(T &&x) -> decltype(x.read(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};
struct Scanner {
FILE *fp;
char line[(1 << 15) + 1];
size_t st = 0, ed = 0;
void reread() {
memmove(line, line + st, ed - st);
ed -= st;
st = 0;
ed += fread(line + ed, 1, (1 << 15) - ed, fp);
line[ed] = '\0';
}
bool succ() {
while (true) {
if (st == ed) {
reread();
if (st == ed) return false;
}
while (st != ed && isspace(line[st])) st++;
if (st != ed) break;
}
if (ed - st <= 50) {
bool sep = false;
for (size_t i = st; i < ed; i++) {
if (isspace(line[i])) {
sep = true;
break;
}
}
if (!sep) reread();
}
return true;
}
template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
while (true) {
size_t sz = 0;
while (st + sz < ed && !isspace(line[st + sz])) sz++;
ref.append(line + st, sz);
st += sz;
if (!sz || st != ed) break;
reread();
}
return true;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
ref = T(0);
while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
if (neg) ref = -ref;
return true;
}
template <typename T,
typename enable_if<has_read<T>::value>::type * = nullptr>
inline bool read_single(T &x) {
x.read();
return true;
}
bool read_single(double &ref) {
string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
bool read_single(char &ref) {
string s;
if (!read_single(s) || s.size() != 1) return false;
ref = s[0];
return true;
}
template <class T>
bool read_single(vector<T> &ref) {
for (auto &d: ref) {
if (!read_single(d)) return false;
}
return true;
}
template <class T, class U>
bool read_single(pair<T, U> &p) {
return (read_single(p.first) && read_single(p.second));
}
template <size_t N = 0, typename T>
void read_single_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
read_single(x);
read_single_tuple<N + 1>(t);
}
}
template <class... T>
bool read_single(tuple<T...> &tpl) {
read_single_tuple(tpl);
return true;
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
Scanner(FILE *fp) : fp(fp) {}
};
struct Printer {
Printer(FILE *_fp) : fp(_fp) {}
~Printer() { flush(); }
static constexpr size_t SIZE = 1 << 15;
FILE *fp;
char line[SIZE], small[50];
size_t pos = 0;
void flush() {
fwrite(line, 1, pos, fp);
pos = 0;
}
void write(const char val) {
if (pos == SIZE) flush();
line[pos++] = val;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void write(T val) {
if (pos > (1 << 15) - 50) flush();
if (val == 0) {
write('0');
return;
}
if (val < 0) {
write('-');
val = -val; // todo min
}
size_t len = 0;
while (val) {
small[len++] = char(0x30 | (val % 10));
val /= 10;
}
for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
pos += len;
}
void write(const string s) {
for (char c: s) write(c);
}
void write(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) write(s[i]);
}
void write(const double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
void write(const long double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
template <typename T,
typename enable_if<has_write<T>::value>::type * = nullptr>
inline void write(T x) {
x.write();
}
template <class T>
void write(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
template <class T, class U>
void write(const pair<T, U> val) {
write(val.first);
write(' ');
write(val.second);
}
template <size_t N = 0, typename T>
void write_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { write(' '); }
const auto x = std::get<N>(t);
write(x);
write_tuple<N + 1>(t);
}
}
template <class... T>
bool write(tuple<T...> tpl) {
write_tuple(tpl);
return true;
}
template <class T, size_t S>
void write(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
void write(i128 val) {
string s;
bool negative = 0;
if (val < 0) {
negative = 1;
val = -val;
}
while (val) {
s += '0' + int(val % 10);
val /= 10;
}
if (negative) s += "-";
reverse(all(s));
if (len(s) == 0) s = "0";
write(s);
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
scanner.read(head);
read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/alg/monoid/add.hpp"
template <typename X>
struct Monoid_Add {
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 3 "library/ds/fenwicktree/fenwicktree.hpp"
template <typename Monoid>
struct FenwickTree {
using G = Monoid;
using E = typename G::value_type;
int n;
vector<E> dat;
E total;
FenwickTree() {}
FenwickTree(int n) { build(n); }
template <typename F>
FenwickTree(int n, F f) {
build(n, f);
}
FenwickTree(const vc<E>& v) { build(v); }
void build(int m) {
n = m;
dat.assign(m, G::unit());
total = G::unit();
}
void build(const vc<E>& v) {
build(len(v), [&](int i) -> E { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m;
dat.clear();
dat.reserve(n);
total = G::unit();
FOR(i, n) { dat.eb(f(i)); }
for (int i = 1; i <= n; ++i) {
int j = i + (i & -i);
if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]);
}
total = prefix_sum(m);
}
E prod_all() { return total; }
E sum_all() { return total; }
E sum(int k) { return prefix_sum(k); }
E prod(int k) { return prefix_prod(k); }
E prefix_sum(int k) { return prefix_prod(k); }
E prefix_prod(int k) {
chmin(k, n);
E ret = G::unit();
for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]);
return ret;
}
E sum(int L, int R) { return prod(L, R); }
E prod(int L, int R) {
chmax(L, 0), chmin(R, n);
if (L == 0) return prefix_prod(R);
assert(0 <= L && L <= R && R <= n);
E pos = G::unit(), neg = G::unit();
while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; }
while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; }
return G::op(pos, G::inverse(neg));
}
void add(int k, E x) { multiply(k, x); }
void multiply(int k, E x) {
static_assert(G::commute);
total = G::op(total, x);
for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x);
}
template <class F>
int max_right(const F check) {
assert(check(G::unit()));
int i = 0;
E s = G::unit();
int k = 1;
while (2 * k <= n) k *= 2;
while (k) {
if (i + k - 1 < len(dat)) {
E t = G::op(s, dat[i + k - 1]);
if (check(t)) { i += k, s = t; }
}
k >>= 1;
}
return i;
}
int kth(E k) {
return max_right([&k](E x) -> bool { return x <= k; });
}
};
#line 5 "main.cpp"
void solve() {
LL(N, M, K);
if (N == 1) {
if (K > M) return print(-1);
return print(K);
}
if (M == 1) {
if (K >= 2) return print(-1);
vc<int> A(N, 1);
return print(A);
}
if (M >= 3) {
vi F(N, M - 2);
F[0] = M;
F[1] = M - 1;
FOR(i, 2, N) F[i] = M - 2;
vi A(N);
--K;
FOR_R(i, N) {
A[i] = K % F[i];
K /= F[i];
}
if (K > 0) return print(-1);
FenwickTree<Monoid_Add<int>> bit(M, [&](int i) -> int { return 1; });
vc<int> ANS(N);
FOR(i, N) {
vc<int> S;
if (i >= 1) S.eb(ANS[i - 1]);
if (i >= 2) S.eb(ANS[i - 2]);
for (auto&& x: S) bit.add(x, -1);
ANS[i] = bit.kth(A[i]);
for (auto&& x: S) bit.add(x, +1);
}
for (auto&& x: ANS) ++x;
print(ANS);
return;
}
assert(M == 2);
ll n = min<int>(N, 12);
vc<string> cand;
ll best = infty<int>;
auto eval = [&](string S) -> ll {
ll cnt = 0;
FOR(L, n) FOR(R, L + 1, n + 1) {
string X = S.substr(L, R - L);
string Y = X;
reverse(all(Y));
if (X == Y) ++cnt;
}
return cnt;
};
FOR(s, 1 << n) {
string A;
FOR(i, n) A += (s >> i & 1 ? '1' : '0');
ll x = eval(A);
if (chmin(best, x)) cand.clear();
if (best == x) cand.eb(A);
}
sort(all(cand));
if (K > len(cand)) return print(-1);
string A = cand[K - 1];
while (len(A) < N) { A += A.substr(0, 6); }
A.resize(N);
vc<int> ANS(N);
FOR(i, N) ANS[i] = (A[i] == '0' ? 1 : 2);
print(ANS);
}
signed main() {
solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 2ms
memory: 3408kb
input:
1 1 1
output:
1
result:
ok 1 number(s): "1"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3336kb
input:
2 2 2
output:
2 1
result:
ok 2 number(s): "2 1"
Test #3:
score: 0
Accepted
time: 2ms
memory: 3468kb
input:
3 3 3
output:
2 1 3
result:
ok 3 number(s): "2 1 3"
Test #4:
score: 0
Accepted
time: 2ms
memory: 3432kb
input:
9 9 8244353
output:
2 4 1 2 6 8 1 2 7
result:
ok 9 numbers
Test #5:
score: 0
Accepted
time: 2ms
memory: 3420kb
input:
10 7 998244353
output:
-1
result:
ok 1 number(s): "-1"
Test #6:
score: 0
Accepted
time: 2ms
memory: 3332kb
input:
3 1000 994253860
output:
998 244 353
result:
ok 3 number(s): "998 244 353"
Test #7:
score: 0
Accepted
time: 0ms
memory: 3428kb
input:
58 4 864691128455135232
output:
4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4
result:
ok 58 numbers
Test #8:
score: 0
Accepted
time: 2ms
memory: 3420kb
input:
58 4 864691128455135233
output:
-1
result:
ok 1 number(s): "-1"
Test #9:
score: 0
Accepted
time: 301ms
memory: 30424kb
input:
1000000 1000000 1000000000000000000
output:
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 ...
result:
ok 1000000 numbers
Test #10:
score: 0
Accepted
time: 79ms
memory: 26400kb
input:
1000000 4 1000000000000000000
output:
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 ...
result:
ok 1000000 numbers
Test #11:
score: 0
Accepted
time: 2ms
memory: 3328kb
input:
1 1 2
output:
-1
result:
ok 1 number(s): "-1"
Test #12:
score: 0
Accepted
time: 1ms
memory: 3408kb
input:
1 2 2
output:
2
result:
ok 1 number(s): "2"
Test #13:
score: 0
Accepted
time: 2ms
memory: 3336kb
input:
2 2 1
output:
1 2
result:
ok 2 number(s): "1 2"
Test #14:
score: 0
Accepted
time: 2ms
memory: 3476kb
input:
3 2 4
output:
2 1 1
result:
ok 3 number(s): "2 1 1"
Test #15:
score: 0
Accepted
time: 2ms
memory: 3388kb
input:
3 2 7
output:
-1
result:
ok 1 number(s): "-1"
Test #16:
score: 0
Accepted
time: 2ms
memory: 3476kb
input:
4 2 10
output:
2 2 1 2
result:
ok 4 number(s): "2 2 1 2"
Test #17:
score: 0
Accepted
time: 0ms
memory: 3380kb
input:
4 2 3
output:
1 2 1 1
result:
ok 4 number(s): "1 2 1 1"
Test #18:
score: 0
Accepted
time: 2ms
memory: 3424kb
input:
5 2 7
output:
2 1 1 2 1
result:
ok 5 number(s): "2 1 1 2 1"
Test #19:
score: 0
Accepted
time: 2ms
memory: 3548kb
input:
5 2 13
output:
-1
result:
ok 1 number(s): "-1"
Test #20:
score: 0
Accepted
time: 2ms
memory: 3380kb
input:
6 2 5
output:
1 2 2 1 1 2
result:
ok 6 numbers
Test #21:
score: 0
Accepted
time: 21ms
memory: 11888kb
input:
1000000 2 3
output:
1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 ...
result:
ok 1000000 numbers
Test #22:
score: 0
Accepted
time: 12ms
memory: 11928kb
input:
1000000 2 5
output:
1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 ...
result:
ok 1000000 numbers
Test #23:
score: 0
Accepted
time: 26ms
memory: 11852kb
input:
1000000 2 7
output:
2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 ...
result:
ok 1000000 numbers
Test #24:
score: 0
Accepted
time: 9ms
memory: 3424kb
input:
1000000 2 1000000000000000000
output:
-1
result:
ok 1 number(s): "-1"
Test #25:
score: 0
Accepted
time: 0ms
memory: 3436kb
input:
1 3 2
output:
2
result:
ok 1 number(s): "2"
Test #26:
score: 0
Accepted
time: 2ms
memory: 3560kb
input:
2 3 5
output:
3 1
result:
ok 2 number(s): "3 1"
Test #27:
score: 0
Accepted
time: 79ms
memory: 26484kb
input:
1000000 3 5
output:
3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 ...
result:
ok 1000000 numbers
Test #28:
score: 0
Accepted
time: 12ms
memory: 18648kb
input:
1000000 3 7
output:
-1
result:
ok 1 number(s): "-1"
Test #29:
score: 0
Accepted
time: 83ms
memory: 26400kb
input:
1000000 4 211106232532991
output:
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 ...
result:
ok 1000000 numbers
Test #30:
score: 0
Accepted
time: 82ms
memory: 26556kb
input:
1000000 5 1000000000000000000
output:
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 ...
result:
ok 1000000 numbers
Test #31:
score: 0
Accepted
time: 222ms
memory: 27024kb
input:
1000000 123123 1000000000000000000
output:
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 ...
result:
ok 1000000 numbers
Test #32:
score: 0
Accepted
time: 0ms
memory: 6964kb
input:
6 1000000 1000000000000000000
output:
1 2 4 9 15 8
result:
ok 6 numbers
Test #33:
score: 0
Accepted
time: 3ms
memory: 6940kb
input:
4 1000000 1000000000000000000
output:
2 7 15 9
result:
ok 4 number(s): "2 7 15 9"
Test #34:
score: 0
Accepted
time: 6ms
memory: 7032kb
input:
3 1000000 999997000002000000
output:
1000000 999999 999998
result:
ok 3 number(s): "1000000 999999 999998"
Test #35:
score: 0
Accepted
time: 2ms
memory: 3376kb
input:
3 1000000 999997000002000001
output:
-1
result:
ok 1 number(s): "-1"