QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#104156#6404. Shuttle Tourhos_lyricAC ✓3590ms141116kbC++149.3kb2023-05-09 09:24:242023-05-09 09:24:27

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-05-09 09:24:27]
  • 评测
  • 测评结果:AC
  • 用时:3590ms
  • 内存:141116kb
  • [2023-05-09 09:24:24]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }


// T: monoid representing information of an interval.
//   T()  should return the identity.
//   T(S s)  should represent a single element of the array.
//   T::pull(const T &l, const T &r)  should pull two intervals.
template <class T> struct SegmentTreePoint {
  int logN, n;
  vector<T> ts;
  SegmentTreePoint() {}
  explicit SegmentTreePoint(int n_) {
    for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
    ts.resize(n << 1);
  }
  template <class S> explicit SegmentTreePoint(const vector<S> &ss) {
    const int n_ = ss.size();
    for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
    ts.resize(n << 1);
    for (int i = 0; i < n_; ++i) at(i) = T(ss[i]);
    build();
  }
  T &at(int i) {
    return ts[n + i];
  }
  void build() {
    for (int u = n; --u; ) pull(u);
  }

  inline void pull(int u) {
    ts[u].pull(ts[u << 1], ts[u << 1 | 1]);
  }

  // Changes the value of point a to s.
  template <class S> void change(int a, const S &s) {
    assert(0 <= a); assert(a < n);
    ts[a += n] = T(s);
    for (; a >>= 1; ) pull(a);
  }

  // Applies T::f(args...) to point a.
  template <class F, class... Args>
  void ch(int a, F f, Args &&... args) {
    assert(0 <= a); assert(a < n);
    (ts[a += n].*f)(args...);
    for (; a >>= 1; ) pull(a);
  }

  // Calculates the product for [a, b).
  T get(int a, int b) {
    assert(0 <= a); assert(a <= b); assert(b <= n);
    if (a == b) return T();
    a += n; b += n;
    T prodL, prodR, t;
    for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
      if (aa & 1) { t.pull(prodL, ts[aa++]); prodL = t; }
      if (bb & 1) { t.pull(ts[--bb], prodR); prodR = t; }
    }
    t.pull(prodL, prodR);
    return t;
  }

  // Calculates T::f(args...) of a monoid type for [a, b).
  //   op(-, -)  should calculate the product.
  //   e()  should return the identity.
  template <class Op, class E, class F, class... Args>
#if __cplusplus >= 201402L
  auto
#else
  decltype((std::declval<T>().*F())())
#endif
  get(int a, int b, Op op, E e, F f, Args &&... args) {
    assert(0 <= a); assert(a <= b); assert(b <= n);
    if (a == b) return e();
    a += n; b += n;
    auto prodL = e(), prodR = e();
    for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
      if (aa & 1) prodL = op(prodL, (ts[aa++].*f)(args...));
      if (bb & 1) prodR = op((ts[--bb].*f)(args...), prodR);
    }
    return op(prodL, prodR);
  }

  // Find min b s.t. T::f(args...) returns true,
  // when called for the partition of [a, b) from left to right.
  //   Returns n + 1 if there is no such b.
  template <class F, class... Args>
  int findRight(int a, F f, Args &&... args) {
    assert(0 <= a); assert(a <= n);
    if ((T().*f)(args...)) return a;
    if (a == n) return n + 1;
    a += n;
    for (; ; a >>= 1) if (a & 1) {
      if ((ts[a].*f)(args...)) {
        for (; a < n; ) {
          if (!(ts[a <<= 1].*f)(args...)) ++a;
        }
        return a - n + 1;
      }
      ++a;
      if (!(a & (a - 1))) return n + 1;
    }
  }

  // Find max a s.t. T::f(args...) returns true,
  // when called for the partition of [a, b) from right to left.
  //   Returns -1 if there is no such a.
  template <class F, class... Args>
  int findLeft(int b, F f, Args &&... args) {
    assert(0 <= b); assert(b <= n);
    if ((T().*f)(args...)) return b;
    if (b == 0) return -1;
    b += n;
    for (; ; b >>= 1) if ((b & 1) || b == 2) {
      if ((ts[b - 1].*f)(args...)) {
        for (; b <= n; ) {
          if (!(ts[(b <<= 1) - 1].*f)(args...)) --b;
        }
        return b - n - 1;
      }
      --b;
      if (!(b & (b - 1))) return -1;
    }
  }
};

////////////////////////////////////////////////////////////////////////////////

constexpr int INF = 1001001001;

struct Node {
  pair<int, int> mn, mx;
  Node() : mn(+INF, -1), mx(-INF, -1) {}
  Node(const pair<int, int> &val) : mn(val), mx(val) {}
  void pull(const Node &l, const Node &r) {
    mn = min(l.mn, r.mn);
    mx = max(l.mx, r.mx);
  }
};

////////////////////////////////////////////////////////////////////////////////


int N, Q;
char S[200'010];
vector<int> A, B;
vector<Int> C;

vector<vector<int>> G;
vector<int> dep, dis, fin;
vector<int> seq;

int H;
vector<int> head;
vector<Int> cs;

void dfs(int u, int p, int h) {
  dep[u] = ~p ? (dep[p] + 1) : 0;
  dis[u] = seq.size();
  seq.push_back(u);
  
  head[u] = h;
  int deg = 0;
  for (const int i : G[u]) {
    const int v = A[i] ^ B[i] ^ u;
    if (p != v) {
      ++deg;
    }
  }
  
  for (const int i : G[u]) {
    const int v = A[i] ^ B[i] ^ u;
    if (p != v) {
      cs[v] = cs[u] + C[i];
      dfs(v, u, (deg >= 2) ? H++ : h);
      seq.push_back(u);
    }
  }
}

// [bsr(2 N - 1) + 1][2 N - 1]
int E;
int mns[19][400'010];
int shallower(int u, int v) {
  return (dep[u] <= dep[v]) ? u : v;
}
int lca(int u, int v) {
  int j0 = dis[u], j1 = dis[v];
  if (j0 > j1) swap(j0, j1);
  ++j1;
  const int e = 31 - __builtin_clz(j1 - j0);
  return shallower(mns[e][j0], mns[e][j1 - (1 << e)]);
}

Int getDist(int u, int v) {
  const int l = lca(u, v);
  return cs[u] + cs[v] - 2 * cs[l];
}

int main() {
  for (; ~scanf("%d%d", &N, &Q); ) {
    scanf("%s", S);
    A.resize(N - 1);
    B.resize(N - 1);
    C.resize(N - 1);
    for (int i = 0; i < N - 1; ++i) {
      scanf("%d%d%lld", &A[i], &B[i], &C[i]);
      --A[i];
      --B[i];
    }
    
    G.assign(N, {});
    for (int i = 0; i < N - 1; ++i) {
      G[A[i]].push_back(i);
      G[B[i]].push_back(i);
    }
    dep.resize(N);
    dis.resize(N);
    fin.resize(N);
    seq.clear();
    
    H = 1;
    head.resize(N);
    cs.assign(N, 0);
    dfs(0, -1, 0);
    
    E = (31 - __builtin_clz(2 * N - 1)) + 1;
    for (int j = 0; j < 2 * N - 1; ++j) {
      mns[0][j] = seq[j];
    }
    for (int e = 0; e < E - 1; ++e) {
      for (int i = 0; i + (1 << (e + 1)) <= 2 * N - 1; ++i) {
        mns[e + 1][i] = shallower(mns[e][i], mns[e][i + (1 << e)]);
      }
    }
// cerr<<"head = "<<head<<endl;
// cerr<<"cs = "<<cs<<endl;
    
    vector<vector<int>> uss(H);
    for (int u = 0; u < N; ++u) {
      uss[head[u]].push_back(u);
    }
    vector<vector<int>> idss(H, vector<int>(N + 1, -1));
    vector<SegmentTreePoint<Node>> segs(H);
    for (int h = 0; h < H; ++h) {
      const auto &us = uss[h];
      const int usLen = us.size();
      for (int j = 0; j <= usLen; ++j) {
        const int uL = (j == 0) ? 0 : (us[j - 1] + 1);
        const int uR = (j == usLen) ? (N + 1) : (us[j] + 1);
        fill(idss[h].begin() + uL, idss[h].begin() + uR, j);
      }
      segs[h] = SegmentTreePoint<Node>(usLen);
    }
    
    auto add = [&](int u) -> void {
// cerr<<"add "<<u<<endl;
      const int h = head[u];
      segs[head[u]].change(idss[h][u], make_pair(dep[u], u));
    };
    auto rem = [&](int u) -> void {
// cerr<<"rem "<<u<<endl;
      const int h = head[u];
      segs[head[u]].change(idss[h][u], Node());
    };
    
    for (int u = 0; u < N; ++u) if (S[u] == '1') {
      add(u);
    }
    
    for (; Q--; ) {
      int typ;
      scanf("%d", &typ);
      if (typ == 1) {
        int u;
        scanf("%d", &u);
        --u;
        
        S[u] ^= '0' ^ '1';
        (S[u] == '1') ? add(u) : rem(u);
      } else {
        int l, r;
        scanf("%d%d", &l, &r);
        --l;
        
        vector<int> us;
        us.reserve(2 * H);
        for (int h = 0; h < H; ++h) {
          const auto res = segs[h].get(idss[h][l], idss[h][r]);
          for (const int u : {res.mn.second, res.mx.second}) if (~u) {
            us.push_back(u);
          }
        }
        const int usLen = us.size();
        /*
        sort(us.begin(), us.end(), [&](int u, int v) -> bool {
          return (dis[u] < dis[v]);
        });
        */
        Int ans;
        if (usLen != 0) {
          ans = 0;
          for (int j = 0; j < usLen; ++j) {
            ans += getDist(us[j], us[(j + 1 == usLen) ? 0 : (j + 1)]);
          }
        } else {
          ans = -1;
        }
        printf("%lld\n", ans);
      }
    }
  }
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 4ms
memory: 9872kb

input:

5 6
10110
1 2 1
1 3 10
2 4 100
3 5 1000
2 1 5
1 3
2 1 5
2 2 4
2 5 5
2 1 1

output:

222
202
0
-1
0

result:

ok 5 number(s): "222 202 0 -1 0"

Test #2:

score: 0
Accepted
time: 99ms
memory: 13932kb

input:

50 200000
00100100100001101010110100000111100011101110011010
14 47 940241413
11 43 331483591
37 38 496247070
47 46 832459694
7 15 16479291
1 30 402388666
30 8 513064064
46 50 739311480
5 4 761894947
32 41 631669659
17 24 715786564
35 20 763151642
32 33 492466005
39 11 186023146
9 7 805081251
3 42 25...

output:

17149847378
-1
26540740138
29613692754
21307948558
27003443184
11893407374
18332625722
20412196350
20281573062
29727468956
9593307160
9380710234
23682775470
16688997988
2856655228
14982588156
0
-1
9140136614
26193602866
22558599316
24807163344
19126284190
8533875940
7695830712
18079494744
0
27004673...

result:

ok 100000 numbers

Test #3:

score: 0
Accepted
time: 85ms
memory: 11904kb

input:

50 200000
10010001110011101101101011010011100101101010111001
1 25 560163135
2 7 696374536
33 39 14485266
39 22 456690113
4 5 267811886
18 6 657680382
3 43 865617406
25 14 885515220
41 34 919525052
42 50 410634144
8 3 487403277
3 30 701549676
2 43 54223104
7 34 691078766
14 23 323352590
26 48 4936558...

output:

17177676326
31373486130
15290175638
8192974494
22734716092
27802380120
6315957348
0
15780401446
15929384564
26423899248
9639532596
21199366790
26413065782
-1
29063665908
29925313598
28651879288
17144176262
16526083688
28206620550
26873163342
14840246174
32414950818
29985336496
0
11937422088
11131990...

result:

ok 100000 numbers

Test #4:

score: 0
Accepted
time: 77ms
memory: 15984kb

input:

50 200000
01011001001010000100001101100111011001101011101000
34 29 654100339
33 5 947063765
45 25 962067151
11 13 509130797
26 47 988757358
49 22 75267557
7 11 431530851
46 1 531969122
22 43 449891945
34 6 526679193
50 17 499004364
22 23 226725950
26 48 203414490
11 44 900725507
10 29 451714017
35 2...

output:

24080362406
0
0
21418182584
28358635244
28257750030
24520294678
21418182584
0
15335211126
28621468542
18664505530
19335499776
32374868794
23618866752
26801803500
24116134918
27676993638
30222353942
25612316674
20504702130
28400398734
29472795250
24400110084
20586186786
25612316674
0
30067400886
1297...

result:

ok 100000 numbers

Test #5:

score: 0
Accepted
time: 1ms
memory: 5712kb

input:

2 10
01
1 2 340134039
2 1 2
1 1
2 1 2
1 2
2 1 1
1 2
2 2 2
1 2
2 2 2
1 1

output:

0
680268078
0
0
-1

result:

ok 5 number(s): "0 680268078 0 0 -1"

Test #6:

score: 0
Accepted
time: 177ms
memory: 79784kb

input:

200000 100
1100001001001101010000111111011011101010001011011011011010101111010001111010101100101001010000110100100011111010011100101010010001011010111100101110010000101010000100111100000011001100111101110011000011010011011011100101100111101010111101110111001111111010001010010000110110100000111000111...

output:

187263442365796
187267199881816
187176203274470
187269896250018
187239740690858
186974761323092
187257776119514
187269896250018
187035239640930
186911636122472
187263030332128
187121605387264
187264313877130
187263442365796
187269896250018
187249588971104
187263442365796
187263442365796
187264313877...

result:

ok 50 numbers

Test #7:

score: 0
Accepted
time: 150ms
memory: 79408kb

input:

200000 100
1000100001000101011000010111101000110001110111010000000010100100001110001110011001001011000010001000101111000111000100111101111111011111101101011110010101110000011011000101010000101110000100101000101110011111110000010011010010001001010001101000001111001001011111110100100011011100010100101...

output:

187406582272754
187713357625510
187713357625510
187710409039730
187708440524170
187705546874918
187675370061160
187696435101958
187704004975728
187708440524170
187708440524170
187490194913408
186797006090958
187708440524170
187708440524170
187694259450196
187691068337432
187699562335668
187708440524...

result:

ok 50 numbers

Test #8:

score: 0
Accepted
time: 211ms
memory: 139148kb

input:

200000 100
1101110101111010101100101110111101001010101100011111011010101101001011000101011011110110110001000000110000100110101010001011100110100101010110001111000100011010101011100011111010111001011110110001001010000001010100000000100010010000110100101010000111010100100111001011101001000011010101011...

output:

187071935465024
186902015424650
186944515923806
187083386398370
187083386398370
186176053533638
187210565613960
186840136921858
187059112646348
186963648681914
187157614978100
187171857507720
186687953621656
187037985042418
184267618052908
185811051686090
186716949587794
186666528269428
186754258305...

result:

ok 50 numbers

Test #9:

score: 0
Accepted
time: 3590ms
memory: 141116kb

input:

200000 200000
1010011001010010101000001000111111110110111100000011000110010101000001101110111000100011010101100011001011101100010100000010100000100110100001000111010000011001010111001001000000111001100110010100101010111000000000011110101110010101110110110101100001011001101010101001000010000010000000...

output:

185874943612396
186901189463748
185325592077116
187007806200644
185723936146376
186683200699722
186830061692652
186256265895174
186860903405924
186810412385682
186744028102060
186994420108608
186831837842360
180459525430870
186966649455016
186952309712742
185810351127924
186849618327982
186494273101...

result:

ok 100000 numbers

Test #10:

score: 0
Accepted
time: 3590ms
memory: 138912kb

input:

200000 200000
1101100101010001011001101010110111010000001100111000100010001111101101110111001101000001101011010000001110101101001010011000001011000101010111001101100100101001100111010001101010011100101100010110000011110101101011000011101101010111101000000111100100011101000110011100011000010010001011...

output:

187559700459682
187535810670694
187366757549978
187509694959444
186405180245408
187572993046976
186802217032708
186278525122374
187171989295434
187404069323808
187366390326582
184670301024044
186230793287498
187530780070456
187597311483370
187406310330638
187384636670170
187047338416520
187544270920...

result:

ok 100000 numbers

Test #11:

score: 0
Accepted
time: 3511ms
memory: 138908kb

input:

200000 200000
0011111000111101101011111111000010101011010000100000110110010110010000011010101011101001100001001001000001100110010100101101001111000111010011110100000100000001111111000001000101000011110001101101111000101001100010010011001101100111110000110001100001100011110011001100100010000010001101...

output:

187057082821034
187050489592834
185798962075874
186490497612254
185547643085476
185839649755426
186731725449660
186845143722558
186446910671932
186830913714546
186903848544526
186827856700414
187012840145598
187030896936824
186738571374322
186338959389628
186977751482606
187075649881228
186978915850...

result:

ok 100000 numbers

Test #12:

score: 0
Accepted
time: 1ms
memory: 5660kb

input:

1 3
0
2 1 1
1 1
2 1 1

output:

-1
0

result:

ok 2 number(s): "-1 0"

Test #13:

score: 0
Accepted
time: 0ms
memory: 7752kb

input:

7 2
0001100
1 2 1
2 3 10
3 4 100
4 5 1000
3 6 10000
6 7 100000
2 1 7
2 2 6

output:

2000
2000

result:

ok 2 number(s): "2000 2000"