QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#104156 | #6404. Shuttle Tour | hos_lyric | AC ✓ | 3590ms | 141116kb | C++14 | 9.3kb | 2023-05-09 09:24:24 | 2023-05-09 09:24:27 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
// T: monoid representing information of an interval.
// T() should return the identity.
// T(S s) should represent a single element of the array.
// T::pull(const T &l, const T &r) should pull two intervals.
template <class T> struct SegmentTreePoint {
int logN, n;
vector<T> ts;
SegmentTreePoint() {}
explicit SegmentTreePoint(int n_) {
for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
ts.resize(n << 1);
}
template <class S> explicit SegmentTreePoint(const vector<S> &ss) {
const int n_ = ss.size();
for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
ts.resize(n << 1);
for (int i = 0; i < n_; ++i) at(i) = T(ss[i]);
build();
}
T &at(int i) {
return ts[n + i];
}
void build() {
for (int u = n; --u; ) pull(u);
}
inline void pull(int u) {
ts[u].pull(ts[u << 1], ts[u << 1 | 1]);
}
// Changes the value of point a to s.
template <class S> void change(int a, const S &s) {
assert(0 <= a); assert(a < n);
ts[a += n] = T(s);
for (; a >>= 1; ) pull(a);
}
// Applies T::f(args...) to point a.
template <class F, class... Args>
void ch(int a, F f, Args &&... args) {
assert(0 <= a); assert(a < n);
(ts[a += n].*f)(args...);
for (; a >>= 1; ) pull(a);
}
// Calculates the product for [a, b).
T get(int a, int b) {
assert(0 <= a); assert(a <= b); assert(b <= n);
if (a == b) return T();
a += n; b += n;
T prodL, prodR, t;
for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
if (aa & 1) { t.pull(prodL, ts[aa++]); prodL = t; }
if (bb & 1) { t.pull(ts[--bb], prodR); prodR = t; }
}
t.pull(prodL, prodR);
return t;
}
// Calculates T::f(args...) of a monoid type for [a, b).
// op(-, -) should calculate the product.
// e() should return the identity.
template <class Op, class E, class F, class... Args>
#if __cplusplus >= 201402L
auto
#else
decltype((std::declval<T>().*F())())
#endif
get(int a, int b, Op op, E e, F f, Args &&... args) {
assert(0 <= a); assert(a <= b); assert(b <= n);
if (a == b) return e();
a += n; b += n;
auto prodL = e(), prodR = e();
for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
if (aa & 1) prodL = op(prodL, (ts[aa++].*f)(args...));
if (bb & 1) prodR = op((ts[--bb].*f)(args...), prodR);
}
return op(prodL, prodR);
}
// Find min b s.t. T::f(args...) returns true,
// when called for the partition of [a, b) from left to right.
// Returns n + 1 if there is no such b.
template <class F, class... Args>
int findRight(int a, F f, Args &&... args) {
assert(0 <= a); assert(a <= n);
if ((T().*f)(args...)) return a;
if (a == n) return n + 1;
a += n;
for (; ; a >>= 1) if (a & 1) {
if ((ts[a].*f)(args...)) {
for (; a < n; ) {
if (!(ts[a <<= 1].*f)(args...)) ++a;
}
return a - n + 1;
}
++a;
if (!(a & (a - 1))) return n + 1;
}
}
// Find max a s.t. T::f(args...) returns true,
// when called for the partition of [a, b) from right to left.
// Returns -1 if there is no such a.
template <class F, class... Args>
int findLeft(int b, F f, Args &&... args) {
assert(0 <= b); assert(b <= n);
if ((T().*f)(args...)) return b;
if (b == 0) return -1;
b += n;
for (; ; b >>= 1) if ((b & 1) || b == 2) {
if ((ts[b - 1].*f)(args...)) {
for (; b <= n; ) {
if (!(ts[(b <<= 1) - 1].*f)(args...)) --b;
}
return b - n - 1;
}
--b;
if (!(b & (b - 1))) return -1;
}
}
};
////////////////////////////////////////////////////////////////////////////////
constexpr int INF = 1001001001;
struct Node {
pair<int, int> mn, mx;
Node() : mn(+INF, -1), mx(-INF, -1) {}
Node(const pair<int, int> &val) : mn(val), mx(val) {}
void pull(const Node &l, const Node &r) {
mn = min(l.mn, r.mn);
mx = max(l.mx, r.mx);
}
};
////////////////////////////////////////////////////////////////////////////////
int N, Q;
char S[200'010];
vector<int> A, B;
vector<Int> C;
vector<vector<int>> G;
vector<int> dep, dis, fin;
vector<int> seq;
int H;
vector<int> head;
vector<Int> cs;
void dfs(int u, int p, int h) {
dep[u] = ~p ? (dep[p] + 1) : 0;
dis[u] = seq.size();
seq.push_back(u);
head[u] = h;
int deg = 0;
for (const int i : G[u]) {
const int v = A[i] ^ B[i] ^ u;
if (p != v) {
++deg;
}
}
for (const int i : G[u]) {
const int v = A[i] ^ B[i] ^ u;
if (p != v) {
cs[v] = cs[u] + C[i];
dfs(v, u, (deg >= 2) ? H++ : h);
seq.push_back(u);
}
}
}
// [bsr(2 N - 1) + 1][2 N - 1]
int E;
int mns[19][400'010];
int shallower(int u, int v) {
return (dep[u] <= dep[v]) ? u : v;
}
int lca(int u, int v) {
int j0 = dis[u], j1 = dis[v];
if (j0 > j1) swap(j0, j1);
++j1;
const int e = 31 - __builtin_clz(j1 - j0);
return shallower(mns[e][j0], mns[e][j1 - (1 << e)]);
}
Int getDist(int u, int v) {
const int l = lca(u, v);
return cs[u] + cs[v] - 2 * cs[l];
}
int main() {
for (; ~scanf("%d%d", &N, &Q); ) {
scanf("%s", S);
A.resize(N - 1);
B.resize(N - 1);
C.resize(N - 1);
for (int i = 0; i < N - 1; ++i) {
scanf("%d%d%lld", &A[i], &B[i], &C[i]);
--A[i];
--B[i];
}
G.assign(N, {});
for (int i = 0; i < N - 1; ++i) {
G[A[i]].push_back(i);
G[B[i]].push_back(i);
}
dep.resize(N);
dis.resize(N);
fin.resize(N);
seq.clear();
H = 1;
head.resize(N);
cs.assign(N, 0);
dfs(0, -1, 0);
E = (31 - __builtin_clz(2 * N - 1)) + 1;
for (int j = 0; j < 2 * N - 1; ++j) {
mns[0][j] = seq[j];
}
for (int e = 0; e < E - 1; ++e) {
for (int i = 0; i + (1 << (e + 1)) <= 2 * N - 1; ++i) {
mns[e + 1][i] = shallower(mns[e][i], mns[e][i + (1 << e)]);
}
}
// cerr<<"head = "<<head<<endl;
// cerr<<"cs = "<<cs<<endl;
vector<vector<int>> uss(H);
for (int u = 0; u < N; ++u) {
uss[head[u]].push_back(u);
}
vector<vector<int>> idss(H, vector<int>(N + 1, -1));
vector<SegmentTreePoint<Node>> segs(H);
for (int h = 0; h < H; ++h) {
const auto &us = uss[h];
const int usLen = us.size();
for (int j = 0; j <= usLen; ++j) {
const int uL = (j == 0) ? 0 : (us[j - 1] + 1);
const int uR = (j == usLen) ? (N + 1) : (us[j] + 1);
fill(idss[h].begin() + uL, idss[h].begin() + uR, j);
}
segs[h] = SegmentTreePoint<Node>(usLen);
}
auto add = [&](int u) -> void {
// cerr<<"add "<<u<<endl;
const int h = head[u];
segs[head[u]].change(idss[h][u], make_pair(dep[u], u));
};
auto rem = [&](int u) -> void {
// cerr<<"rem "<<u<<endl;
const int h = head[u];
segs[head[u]].change(idss[h][u], Node());
};
for (int u = 0; u < N; ++u) if (S[u] == '1') {
add(u);
}
for (; Q--; ) {
int typ;
scanf("%d", &typ);
if (typ == 1) {
int u;
scanf("%d", &u);
--u;
S[u] ^= '0' ^ '1';
(S[u] == '1') ? add(u) : rem(u);
} else {
int l, r;
scanf("%d%d", &l, &r);
--l;
vector<int> us;
us.reserve(2 * H);
for (int h = 0; h < H; ++h) {
const auto res = segs[h].get(idss[h][l], idss[h][r]);
for (const int u : {res.mn.second, res.mx.second}) if (~u) {
us.push_back(u);
}
}
const int usLen = us.size();
/*
sort(us.begin(), us.end(), [&](int u, int v) -> bool {
return (dis[u] < dis[v]);
});
*/
Int ans;
if (usLen != 0) {
ans = 0;
for (int j = 0; j < usLen; ++j) {
ans += getDist(us[j], us[(j + 1 == usLen) ? 0 : (j + 1)]);
}
} else {
ans = -1;
}
printf("%lld\n", ans);
}
}
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 4ms
memory: 9872kb
input:
5 6 10110 1 2 1 1 3 10 2 4 100 3 5 1000 2 1 5 1 3 2 1 5 2 2 4 2 5 5 2 1 1
output:
222 202 0 -1 0
result:
ok 5 number(s): "222 202 0 -1 0"
Test #2:
score: 0
Accepted
time: 99ms
memory: 13932kb
input:
50 200000 00100100100001101010110100000111100011101110011010 14 47 940241413 11 43 331483591 37 38 496247070 47 46 832459694 7 15 16479291 1 30 402388666 30 8 513064064 46 50 739311480 5 4 761894947 32 41 631669659 17 24 715786564 35 20 763151642 32 33 492466005 39 11 186023146 9 7 805081251 3 42 25...
output:
17149847378 -1 26540740138 29613692754 21307948558 27003443184 11893407374 18332625722 20412196350 20281573062 29727468956 9593307160 9380710234 23682775470 16688997988 2856655228 14982588156 0 -1 9140136614 26193602866 22558599316 24807163344 19126284190 8533875940 7695830712 18079494744 0 27004673...
result:
ok 100000 numbers
Test #3:
score: 0
Accepted
time: 85ms
memory: 11904kb
input:
50 200000 10010001110011101101101011010011100101101010111001 1 25 560163135 2 7 696374536 33 39 14485266 39 22 456690113 4 5 267811886 18 6 657680382 3 43 865617406 25 14 885515220 41 34 919525052 42 50 410634144 8 3 487403277 3 30 701549676 2 43 54223104 7 34 691078766 14 23 323352590 26 48 4936558...
output:
17177676326 31373486130 15290175638 8192974494 22734716092 27802380120 6315957348 0 15780401446 15929384564 26423899248 9639532596 21199366790 26413065782 -1 29063665908 29925313598 28651879288 17144176262 16526083688 28206620550 26873163342 14840246174 32414950818 29985336496 0 11937422088 11131990...
result:
ok 100000 numbers
Test #4:
score: 0
Accepted
time: 77ms
memory: 15984kb
input:
50 200000 01011001001010000100001101100111011001101011101000 34 29 654100339 33 5 947063765 45 25 962067151 11 13 509130797 26 47 988757358 49 22 75267557 7 11 431530851 46 1 531969122 22 43 449891945 34 6 526679193 50 17 499004364 22 23 226725950 26 48 203414490 11 44 900725507 10 29 451714017 35 2...
output:
24080362406 0 0 21418182584 28358635244 28257750030 24520294678 21418182584 0 15335211126 28621468542 18664505530 19335499776 32374868794 23618866752 26801803500 24116134918 27676993638 30222353942 25612316674 20504702130 28400398734 29472795250 24400110084 20586186786 25612316674 0 30067400886 1297...
result:
ok 100000 numbers
Test #5:
score: 0
Accepted
time: 1ms
memory: 5712kb
input:
2 10 01 1 2 340134039 2 1 2 1 1 2 1 2 1 2 2 1 1 1 2 2 2 2 1 2 2 2 2 1 1
output:
0 680268078 0 0 -1
result:
ok 5 number(s): "0 680268078 0 0 -1"
Test #6:
score: 0
Accepted
time: 177ms
memory: 79784kb
input:
200000 100 1100001001001101010000111111011011101010001011011011011010101111010001111010101100101001010000110100100011111010011100101010010001011010111100101110010000101010000100111100000011001100111101110011000011010011011011100101100111101010111101110111001111111010001010010000110110100000111000111...
output:
187263442365796 187267199881816 187176203274470 187269896250018 187239740690858 186974761323092 187257776119514 187269896250018 187035239640930 186911636122472 187263030332128 187121605387264 187264313877130 187263442365796 187269896250018 187249588971104 187263442365796 187263442365796 187264313877...
result:
ok 50 numbers
Test #7:
score: 0
Accepted
time: 150ms
memory: 79408kb
input:
200000 100 1000100001000101011000010111101000110001110111010000000010100100001110001110011001001011000010001000101111000111000100111101111111011111101101011110010101110000011011000101010000101110000100101000101110011111110000010011010010001001010001101000001111001001011111110100100011011100010100101...
output:
187406582272754 187713357625510 187713357625510 187710409039730 187708440524170 187705546874918 187675370061160 187696435101958 187704004975728 187708440524170 187708440524170 187490194913408 186797006090958 187708440524170 187708440524170 187694259450196 187691068337432 187699562335668 187708440524...
result:
ok 50 numbers
Test #8:
score: 0
Accepted
time: 211ms
memory: 139148kb
input:
200000 100 1101110101111010101100101110111101001010101100011111011010101101001011000101011011110110110001000000110000100110101010001011100110100101010110001111000100011010101011100011111010111001011110110001001010000001010100000000100010010000110100101010000111010100100111001011101001000011010101011...
output:
187071935465024 186902015424650 186944515923806 187083386398370 187083386398370 186176053533638 187210565613960 186840136921858 187059112646348 186963648681914 187157614978100 187171857507720 186687953621656 187037985042418 184267618052908 185811051686090 186716949587794 186666528269428 186754258305...
result:
ok 50 numbers
Test #9:
score: 0
Accepted
time: 3590ms
memory: 141116kb
input:
200000 200000 1010011001010010101000001000111111110110111100000011000110010101000001101110111000100011010101100011001011101100010100000010100000100110100001000111010000011001010111001001000000111001100110010100101010111000000000011110101110010101110110110101100001011001101010101001000010000010000000...
output:
185874943612396 186901189463748 185325592077116 187007806200644 185723936146376 186683200699722 186830061692652 186256265895174 186860903405924 186810412385682 186744028102060 186994420108608 186831837842360 180459525430870 186966649455016 186952309712742 185810351127924 186849618327982 186494273101...
result:
ok 100000 numbers
Test #10:
score: 0
Accepted
time: 3590ms
memory: 138912kb
input:
200000 200000 1101100101010001011001101010110111010000001100111000100010001111101101110111001101000001101011010000001110101101001010011000001011000101010111001101100100101001100111010001101010011100101100010110000011110101101011000011101101010111101000000111100100011101000110011100011000010010001011...
output:
187559700459682 187535810670694 187366757549978 187509694959444 186405180245408 187572993046976 186802217032708 186278525122374 187171989295434 187404069323808 187366390326582 184670301024044 186230793287498 187530780070456 187597311483370 187406310330638 187384636670170 187047338416520 187544270920...
result:
ok 100000 numbers
Test #11:
score: 0
Accepted
time: 3511ms
memory: 138908kb
input:
200000 200000 0011111000111101101011111111000010101011010000100000110110010110010000011010101011101001100001001001000001100110010100101101001111000111010011110100000100000001111111000001000101000011110001101101111000101001100010010011001101100111110000110001100001100011110011001100100010000010001101...
output:
187057082821034 187050489592834 185798962075874 186490497612254 185547643085476 185839649755426 186731725449660 186845143722558 186446910671932 186830913714546 186903848544526 186827856700414 187012840145598 187030896936824 186738571374322 186338959389628 186977751482606 187075649881228 186978915850...
result:
ok 100000 numbers
Test #12:
score: 0
Accepted
time: 1ms
memory: 5660kb
input:
1 3 0 2 1 1 1 1 2 1 1
output:
-1 0
result:
ok 2 number(s): "-1 0"
Test #13:
score: 0
Accepted
time: 0ms
memory: 7752kb
input:
7 2 0001100 1 2 1 2 3 10 3 4 100 4 5 1000 3 6 10000 6 7 100000 2 1 7 2 2 6
output:
2000 2000
result:
ok 2 number(s): "2000 2000"