QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#103755 | #6400. Game: Celeste | maspy | RE | 803ms | 727128kb | C++20 | 29.7kb | 2023-05-07 14:17:18 | 2023-05-07 14:17:23 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
assert(!que.empty());
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
assert(!que.empty());
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>
namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
template <class T>
static auto check(T &&x) -> decltype(x.write(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};
struct has_read_impl {
template <class T>
static auto check(T &&x) -> decltype(x.read(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};
struct Scanner {
FILE *fp;
char line[(1 << 15) + 1];
size_t st = 0, ed = 0;
void reread() {
memmove(line, line + st, ed - st);
ed -= st;
st = 0;
ed += fread(line + ed, 1, (1 << 15) - ed, fp);
line[ed] = '\0';
}
bool succ() {
while (true) {
if (st == ed) {
reread();
if (st == ed) return false;
}
while (st != ed && isspace(line[st])) st++;
if (st != ed) break;
}
if (ed - st <= 50) {
bool sep = false;
for (size_t i = st; i < ed; i++) {
if (isspace(line[i])) {
sep = true;
break;
}
}
if (!sep) reread();
}
return true;
}
template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
while (true) {
size_t sz = 0;
while (st + sz < ed && !isspace(line[st + sz])) sz++;
ref.append(line + st, sz);
st += sz;
if (!sz || st != ed) break;
reread();
}
return true;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
ref = T(0);
while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
if (neg) ref = -ref;
return true;
}
template <typename T,
typename enable_if<has_read<T>::value>::type * = nullptr>
inline bool read_single(T &x) {
x.read();
return true;
}
bool read_single(double &ref) {
string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
bool read_single(char &ref) {
string s;
if (!read_single(s) || s.size() != 1) return false;
ref = s[0];
return true;
}
template <class T>
bool read_single(vector<T> &ref) {
for (auto &d: ref) {
if (!read_single(d)) return false;
}
return true;
}
template <class T, class U>
bool read_single(pair<T, U> &p) {
return (read_single(p.first) && read_single(p.second));
}
template <size_t N = 0, typename T>
void read_single_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
read_single(x);
read_single_tuple<N + 1>(t);
}
}
template <class... T>
bool read_single(tuple<T...> &tpl) {
read_single_tuple(tpl);
return true;
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
Scanner(FILE *fp) : fp(fp) {}
};
struct Printer {
Printer(FILE *_fp) : fp(_fp) {}
~Printer() { flush(); }
static constexpr size_t SIZE = 1 << 15;
FILE *fp;
char line[SIZE], small[50];
size_t pos = 0;
void flush() {
fwrite(line, 1, pos, fp);
pos = 0;
}
void write(const char val) {
if (pos == SIZE) flush();
line[pos++] = val;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void write(T val) {
if (pos > (1 << 15) - 50) flush();
if (val == 0) {
write('0');
return;
}
if (val < 0) {
write('-');
val = -val; // todo min
}
size_t len = 0;
while (val) {
small[len++] = char(0x30 | (val % 10));
val /= 10;
}
for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
pos += len;
}
void write(const string s) {
for (char c: s) write(c);
}
void write(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) write(s[i]);
}
void write(const double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
void write(const long double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
template <typename T,
typename enable_if<has_write<T>::value>::type * = nullptr>
inline void write(T x) {
x.write();
}
template <class T>
void write(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
template <class T, class U>
void write(const pair<T, U> val) {
write(val.first);
write(' ');
write(val.second);
}
template <size_t N = 0, typename T>
void write_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { write(' '); }
const auto x = std::get<N>(t);
write(x);
write_tuple<N + 1>(t);
}
}
template <class... T>
bool write(tuple<T...> tpl) {
write_tuple(tpl);
return true;
}
template <class T, size_t S>
void write(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
void write(i128 val) {
string s;
bool negative = 0;
if (val < 0) {
negative = 1;
val = -val;
}
while (val) {
s += '0' + int(val % 10);
val /= 10;
}
if (negative) s += "-";
reverse(all(s));
if (len(s) == 0) s = "0";
write(s);
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
scanner.read(head);
read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/ds/segtree/dynamic_segtree.hpp"
// sparse もあるので状況によってはそっちで
template <typename Monoid, bool PERSISTENT, int NODES>
struct Dynamic_SegTree {
using MX = Monoid;
using X = typename MX::value_type;
using F = function<X(ll, ll)>;
F default_prod;
struct Node {
Node *l, *r;
X x;
};
const ll L0, R0;
Node *pool;
int pid;
using np = Node *;
Dynamic_SegTree(
ll L0, ll R0, F default_prod = [](ll l, ll r) -> X { return MX::unit(); })
: default_prod(default_prod), L0(L0), R0(R0), pid(0) {
pool = new Node[NODES];
}
np new_root() { return new_node(L0, R0); }
np new_node(const X x) {
pool[pid].l = pool[pid].r = nullptr;
pool[pid].x = x;
return &(pool[pid++]);
}
np new_node(ll l, ll r) { return new_node(default_prod(l, r)); }
np new_node() { return new_node(L0, R0); }
np new_node(const vc<X> &dat) {
assert(L0 == 0 && R0 == len(dat));
auto dfs = [&](auto &dfs, ll l, ll r) -> Node * {
if (l == r) return nullptr;
if (r == l + 1) return new_node(dat[l]);
ll m = (l + r) / 2;
np l_root = dfs(dfs, l, m), r_root = dfs(dfs, m, r);
X x = MX::op(l_root->x, r_root->x);
np root = new_node(x);
root->l = l_root, root->r = r_root;
return root;
};
return dfs(dfs, 0, len(dat));
}
X prod(np root, ll l, ll r) {
assert(pid && root && L0 <= l && l <= r && r <= R0);
if (l == r) return MX::unit();
X x = MX::unit();
prod_rec(root, L0, R0, l, r, x);
return x;
}
np set(np root, ll i, const X &x) {
assert(pid && root && L0 <= i && i < R0);
return set_rec(root, L0, R0, i, x);
}
np multiply(np root, ll i, const X &x) {
assert(pid && root && L0 <= i && i < R0);
return multiply_rec(root, L0, R0, i, x);
}
template <typename F>
ll max_right(np root, F check, ll L) {
assert(pid && root && L0 <= L && L <= R0 && check(MX::unit()));
X x = MX::unit();
return max_right_rec(root, check, L0, R0, L, x);
}
template <typename F>
ll min_left(np root, F check, ll R) {
assert(pid && L0 <= R && R <= R0 && check(MX::unit()));
X x = MX::unit();
return min_left_rec(root, check, L0, R0, R, x);
}
// (idx, val)
template <typename F>
void enumerate(np root, F f) {
if (!root) return;
auto dfs = [&](auto &dfs, np c, ll l, ll r) -> void {
if (!c) return;
if (r - l == 1) {
f(l, c->x);
return;
}
ll m = (l + r) / 2;
dfs(dfs, c->l, l, m);
dfs(dfs, c->r, m, r);
};
dfs(dfs, root, L0, R0);
return;
}
void reset() { pid = 0; }
private:
np copy_node(np c) {
if (!c || !PERSISTENT) return c;
pool[pid].l = c->l, pool[pid].r = c->r;
pool[pid].x = c->x;
return &(pool[pid++]);
}
np set_rec(np c, ll l, ll r, ll i, const X &x) {
if (r == l + 1) {
c = copy_node(c);
c->x = x;
return c;
}
ll m = (l + r) / 2;
c = copy_node(c);
if (i < m) {
if (!c->l) c->l = new_node(l, m);
c->l = set_rec(c->l, l, m, i, x);
} else {
if (!c->r) c->r = new_node(m, r);
c->r = set_rec(c->r, m, r, i, x);
}
X xl = (c->l ? c->l->x : default_prod(l, m));
X xr = (c->r ? c->r->x : default_prod(m, r));
c->x = MX::op(xl, xr);
return c;
}
np multiply_rec(np c, ll l, ll r, ll i, const X &x) {
if (r == l + 1) {
c = copy_node(c);
c->x = MX::op(c->x, x);
return c;
}
ll m = (l + r) / 2;
c = copy_node(c);
if (i < m) {
if (!c->l) c->l = new_node(l, m);
c->l = multiply_rec(c->l, l, m, i, x);
} else {
if (!c->r) c->r = new_node(m, r);
c->r = multiply_rec(c->r, m, r, i, x);
}
X xl = (c->l ? c->l->x : default_prod(l, m));
X xr = (c->r ? c->r->x : default_prod(m, r));
c->x = MX::op(xl, xr);
return c;
}
void prod_rec(np c, ll l, ll r, ll ql, ll qr, X &x) {
chmax(ql, l);
chmin(qr, r);
if (ql >= qr) return;
if (!c) {
x = MX::op(x, default_prod(ql, qr));
return;
}
if (l == ql && r == qr) {
x = MX::op(x, c->x);
return;
}
ll m = (l + r) / 2;
prod_rec(c->l, l, m, ql, qr, x);
prod_rec(c->r, m, r, ql, qr, x);
}
template <typename F>
ll max_right_rec(np c, const F &check, ll l, ll r, ll ql, X &x) {
if (r <= ql) return R0;
if (ql <= l && check(MX::op(x, c->x))) {
x = MX::op(x, c->x);
return R0;
}
if (r == l + 1) return l;
ll m = (l + r) / 2;
if (!c->l) c->l = new_node(l, m);
ll k = max_right_rec(c->l, check, l, m, ql, x);
if (k != R0) return k;
if (!c->r) c->r = new_node(m, r);
return max_right_rec(c->r, check, m, r, ql, x);
}
template <typename F>
ll min_left_rec(np c, const F &check, ll l, ll r, ll qr, X &x) {
if (qr <= l) return L0;
if (r <= qr && check(MX::op(c->x, x))) {
x = MX::op(x, c->x);
return L0;
}
if (r == l + 1) return r;
ll m = (l + r) / 2;
if (!c->r) c->r = new_node(m, r);
ll k = min_left_rec(c->r, check, m, r, qr, x);
if (k != L0) return k;
if (!c->l) c->l = new_node(l, m);
return min_left_rec(c->l, check, l, m, qr, x);
}
};
#line 2 "library/mod/modint61.hpp"
struct modint61 {
static constexpr bool is_modint = true;
static constexpr ll mod = (1LL << 61) - 1;
ll val;
constexpr modint61(const ll x = 0) : val(x) {
while (val < 0) val += mod;
while (val >= mod) val -= mod;
}
bool operator<(const modint61 &other) const {
return val < other.val;
} // To use std::map
bool operator==(const modint61 &p) const { return val == p.val; }
bool operator!=(const modint61 &p) const { return val != p.val; }
modint61 &operator+=(const modint61 &p) {
if ((val += p.val) >= mod) val -= mod;
return *this;
}
modint61 &operator-=(const modint61 &p) {
if ((val += mod - p.val) >= mod) val -= mod;
return *this;
}
modint61 &operator*=(const modint61 &p) {
ll a = val, b = p.val;
const ll MASK30 = (1LL << 30) - 1;
const ll MASK31 = (1LL << 31) - 1;
const ll MASK61 = (1LL << 61) - 1;
ll au = a >> 31, ad = a & MASK31;
ll bu = b >> 31, bd = b & MASK31;
ll x = ad * bu + au * bd;
ll xu = x >> 30, xd = x & MASK30;
x = au * bu * 2 + xu + (xd << 31) + ad * bd;
xu = x >> 61, xd = x & MASK61;
x = xu + xd;
if (x >= MASK61) x -= MASK61;
val = x;
return *this;
}
modint61 operator-() const { return modint61(get_mod() - val); }
modint61 &operator/=(const modint61 &p) {
*this *= p.inverse();
return *this;
}
modint61 operator+(const modint61 &p) const { return modint61(*this) += p; }
modint61 operator-(const modint61 &p) const { return modint61(*this) -= p; }
modint61 operator*(const modint61 &p) const { return modint61(*this) *= p; }
modint61 operator/(const modint61 &p) const { return modint61(*this) /= p; }
modint61 inverse() const {
ll a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint61(u);
}
modint61 pow(int64_t n) const {
modint61 ret(1), mul(val);
while (n > 0) {
if (n & 1) ret = ret * mul;
mul = mul * mul;
n >>= 1;
}
return ret;
}
static constexpr ll get_mod() { return mod; }
#ifdef FASTIO
void write() { fastio::printer.write(val); }
void read() { fastio::scanner.read(val); }
#endif
};
#line 2 "library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n);
if (n >= mod) return 0;
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static const int mod = mint::get_mod();
assert(-1 <= n && n < mod);
static vector<mint> dat = {1, 1};
if (n == -1) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if (dense) return C_dense<mint>(n, k);
if (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d] (1-x) ^ {-n} の計算
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "library/mod/modint.hpp"
template <int mod>
struct modint {
int val;
constexpr modint(const ll val = 0) noexcept
: val(val >= 0 ? val % mod : (mod - (-val) % mod) % mod) {}
bool operator<(const modint &other) const {
return val < other.val;
} // To use std::map
modint &operator+=(const modint &p) {
if ((val += p.val) >= mod) val -= mod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += mod - p.val) >= mod) val -= mod;
return *this;
}
modint &operator*=(const modint &p) {
val = (int)(1LL * val * p.val % mod);
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint(-val); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
#ifdef FASTIO
void write() { fastio::printer.write(val); }
void read() { fastio::scanner.read(val); }
#endif
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 998244353) return {23, 31};
if (mod == 1045430273) return {20, 363};
if (mod == 1051721729) return {20, 330};
if (mod == 1053818881) return {20, 2789};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "library/random/base.hpp"
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "library/alg/monoid/add.hpp"
template <typename X>
struct Monoid_Add {
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 9 "main.cpp"
// using mint = modint61;
using mint = modint107;
/*
// cnt, hash
struct Mono {
using value_type = pair<int, mint>;
using X = value_type;
static X op(X x, X y) { return {x.fi + y.fi, x.se + y.se}; }
static constexpr X unit() { return {0, 0}; }
static constexpr bool commute = 1;
};
*/
using Mono = Monoid_Add<mint>;
void solve() {
static Dynamic_SegTree<Mono, true, 30'000'000> seg(0, 1 << 20);
seg.reset();
using np = decltype(seg)::np;
LL(N, L, R);
VEC(int, X, N);
VEC(int, A, N);
vc<mint> hash_base(N + 1);
FOR(i, N + 1) hash_base[i] = RNG(0, mint::get_mod());
vc<mint> invs(N + 1);
FOR(x, N + 1) invs[x] = mint(1) / hash_base[x];
vc<int> par(N, -1);
vc<np> roots(N, nullptr);
roots[0] = seg.new_root();
roots[0] = seg.multiply(roots[0], A[0], hash_base[A[0]]);
auto get_cnt = [&](int v, mint x) -> int { return (x * invs[v]).val; };
auto eval = [&](np a) -> mint {
if (!a) return 0;
return a->x;
};
auto is_small = [&](int i, int j) -> bool {
np a = roots[i], b = roots[j];
assert(a != nullptr);
assert(b != nullptr);
int L = 0, R = (1 << 20);
while (1) {
if (R == L + 1) { return get_cnt(L, eval(a)) < get_cnt(L, eval(b)); }
int M = (L + R) / 2;
if (eval(a->r) != eval(b->r)) {
if (!(a->r)) return true;
if (!(b->r)) return false;
a = a->r, b = b->r, L = M;
continue;
}
if (!(a->l)) return true;
if (!(b->l)) return false;
a = a->l, b = b->l, R = M;
continue;
}
assert(0);
return 1;
};
// [x-R:x-L] の減少列
vc<int> que(N);
int ql = 0, qr = 0;
int nxt = 0;
auto push = [&](int idx) -> void {
if (roots[idx] == nullptr) return;
while (ql < qr && is_small(que[qr - 1], idx)) --qr;
que[qr++] = idx;
};
FOR(v, 1, N) {
while (nxt < v && X[nxt] <= X[v] - L) {
// nxt からの遷移を追加
push(nxt++);
}
while (ql < qr) {
int idx = que[ql];
if (X[idx] < X[v] - R)
++ql;
else
break;
}
if (ql == qr) continue;
int p = que[ql];
par[v] = p;
roots[v] = seg.multiply(roots[p], A[v], hash_base[A[v]]);
}
if (N > 1 && par[N - 1] == -1) return print(-1);
vc<int> PATH = {N - 1};
while (PATH.back() != 0) PATH.eb(par[PATH.back()]);
reverse(all(PATH));
for (auto&& x: PATH) x = A[x];
sort(all(PATH));
reverse(all(PATH));
print(len(PATH));
print(PATH);
}
signed main() {
INT(T);
FOR(T) solve();
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 104ms
memory: 706564kb
input:
2 5 2 3 1 2 3 4 5 5 2 3 1 4 3 1 2 1 4 7 3 3 3
output:
3 5 4 3 -1
result:
ok 3 lines
Test #2:
score: 0
Accepted
time: 410ms
memory: 706884kb
input:
10000 57 8 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 11 16 7 7 10 13 9 14 10 1 12 4 8 13 3 20 16 7 16 19 20 8 19 7 16 6 17 13 7 19 17 11 12 17 6 3 7 8 14 2 4 15 5 18 16 7 20 9 1...
output:
7 20 20 19 14 12 11 3 -1 6 6 5 3 2 1 1 -1 185 20 20 20 20 20 20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 18 18 18 18 18 17 17 17 17 17 17 17 17 16 16 16 16 16 16 16 16 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 12 12 12 12 12 12 12 12...
result:
ok 16378 lines
Test #3:
score: 0
Accepted
time: 410ms
memory: 706884kb
input:
10000 86 230405 991217 3291 11742 17120 30018 47955 52215 96227 98031 100118 106944 117304 121905 124796 135037 164100 164654 169459 177527 206513 212554 228740 229590 261521 295062 300116 312030 326533 329513 349983 353580 355242 356731 363347 368753 389545 396163 399755 409927 426532 427781 441386...
output:
4 20 19 2 1 4 19 12 6 3 -1 -1 24 20 19 18 18 18 18 18 18 18 18 16 16 16 16 15 15 13 12 11 9 5 4 2 2 -1 2 4 3 3 6 4 2 4 13 12 5 5 3 20 17 5 3 20 8 3 -1 -1 1 1 -1 5 20 20 19 15 14 2 13 12 -1 -1 4 20 20 8 5 -1 -1 -1 6 20 16 16 16 13 9 -1 -1 -1 3 19 17 11 3 19 15 9 -1 -1 -1 -1 -1 -1 2 7 3 3 12 10 9 6 20...
result:
ok 14975 lines
Test #4:
score: 0
Accepted
time: 444ms
memory: 706880kb
input:
10000 101 17 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98...
output:
-1 15 10 10 10 10 10 10 9 9 9 9 7 7 6 6 3 -1 44 10 10 10 10 10 10 10 10 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 8 8 8 8 7 6 6 6 6 6 6 6 5 4 3 3 3 3 11 10 10 10 10 10 9 8 7 6 6 2 6 10 10 10 10 8 3 18 10 10 10 10 10 10 8 8 8 8 7 7 7 6 5 3 2 2 -1 -1 1 1 -1 -1 -1 20 10 10 10 10 10 10 10 10 10 9 8 8 8 8 7...
result:
ok 16344 lines
Test #5:
score: 0
Accepted
time: 439ms
memory: 706948kb
input:
10000 18 16 16 1 2 3 4 5 6 7 8 10 11 12 13 14 16 17 18 19 20 2 2 2 1 2 1 1 2 2 2 2 1 2 2 1 2 1 1 403 3 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 ...
output:
-1 126 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 -1 -1 10 2 2 2 2 2 2 1 1 1 1...
result:
ok 16420 lines
Test #6:
score: 0
Accepted
time: 392ms
memory: 706896kb
input:
10000 251 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 9...
output:
251 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
result:
ok 16925 lines
Test #7:
score: 0
Accepted
time: 449ms
memory: 708164kb
input:
100 23882 222 481 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 ...
output:
102 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 19...
result:
ok 167 lines
Test #8:
score: 0
Accepted
time: 365ms
memory: 707900kb
input:
100 3789 29850 70419 774 1032 1649 1723 2194 3021 3114 3308 3344 3360 3688 3781 3967 4245 4878 4966 5099 5597 5617 5638 5645 5784 5871 6136 6158 6358 6483 6600 6766 6775 6800 6895 7119 7439 7485 7696 7734 8432 8493 8581 8627 9203 9576 9885 10062 10290 10454 10466 10537 10717 10861 11048 11484 11497 ...
output:
30 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 19 18 3 -1 -1 -1 4 20 20 18 10 -1 6 20 20 20 20 15 9 -1 -1 5 20 20 20 18 4 4 20 20 13 7 -1 4 20 20 19 18 -1 -1 -1 -1 2 16 8 -1 3 20 20 6 8 20 20 20 20 20 20 15 12 -1 -1 -1 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20...
result:
ok 139 lines
Test #9:
score: 0
Accepted
time: 449ms
memory: 707880kb
input:
100 181 1947 1967 17 23 47 53 55 68 84 92 110 147 153 164 191 198 207 209 215 221 255 269 275 302 305 322 324 363 370 373 385 405 407 429 451 458 466 472 478 500 508 544 557 561 564 565 569 587 600 610 617 630 645 659 665 670 674 715 726 744 747 764 769 770 774 782 786 787 794 795 824 852 860 873 87...
output:
-1 -1 -1 12 10 10 10 10 10 10 10 10 10 10 9 4 12 10 10 10 10 10 10 10 10 10 10 5 5 13 10 10 10 10 10 10 10 10 10 10 10 5 4 -1 22 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 5 2 215 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1...
result:
ok 166 lines
Test #10:
score: 0
Accepted
time: 468ms
memory: 708068kb
input:
100 5589 851 904 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 9...
output:
-1 267 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3...
result:
ok 184 lines
Test #11:
score: 0
Accepted
time: 359ms
memory: 708508kb
input:
100 6944 1905 1926 2 3 4 6 7 8 9 10 11 13 15 16 17 18 20 22 23 24 25 29 31 32 33 34 35 39 40 42 43 44 45 46 47 49 51 54 55 57 58 60 61 62 63 64 67 68 69 71 72 74 75 76 78 79 80 81 82 83 84 85 86 90 91 92 94 95 96 98 100 104 105 106 107 108 109 111 112 117 118 119 120 123 125 126 127 128 131 133 134 ...
output:
-1 -1 296 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
result:
ok 118 lines
Test #12:
score: 0
Accepted
time: 483ms
memory: 712632kb
input:
10 93999 762 838 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 9...
output:
124 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 2332 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3...
result:
ok 20 lines
Test #13:
score: 0
Accepted
time: 417ms
memory: 722392kb
input:
10 10628 1687 1731 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97...
output:
-1 -1 76 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -1 -1 219 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2...
result:
ok 13 lines
Test #14:
score: 0
Accepted
time: 293ms
memory: 719588kb
input:
3 187063 95635158 95636093 11 507 618 934 1132 2191 3177 3365 3571 3605 4833 4988 5100 6157 6542 7005 7008 7258 7353 7366 7507 9327 10129 10131 10240 11168 11397 12964 13519 14429 14748 15782 16126 16244 16491 17464 17693 18411 19312 19807 19967 20183 21049 21170 21526 21813 22278 22946 23297 23600 ...
output:
-1 -1 -1
result:
ok 3 lines
Test #15:
score: 0
Accepted
time: 430ms
memory: 722040kb
input:
3 109970 343649 521308 4 6 25 27 32 45 53 56 76 81 100 111 115 133 143 145 163 169 173 174 194 199 243 261 299 300 303 311 332 335 341 357 367 368 374 387 392 412 415 422 435 437 442 443 444 454 458 462 466 478 482 486 490 497 499 505 512 521 528 544 549 558 560 574 587 597 620 622 625 643 651 652 6...
output:
3 2 2 1 -1 8 2 2 2 2 2 2 1 1
result:
ok 5 lines
Test #16:
score: 0
Accepted
time: 444ms
memory: 723172kb
input:
3 541782 286 289 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 9...
output:
1895 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...
result:
ok 5 lines
Test #17:
score: 0
Accepted
time: 803ms
memory: 725004kb
input:
2 590573 45 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 ...
output:
12722 100000 100000 100000 100000 100000 100000 100000 99999 99999 99999 99999 99999 99999 99998 99998 99998 99998 99998 99998 99998 99998 99998 99998 99998 99998 99998 99998 99997 99997 99997 99997 99997 99996 99996 99996 99995 99995 99994 99994 99994 99994 99994 99994 99994 99993 99993 99993 99993...
result:
ok 4 lines
Test #18:
score: 0
Accepted
time: 572ms
memory: 727128kb
input:
2 658290 51 71 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 ...
output:
11109 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10...
result:
ok 4 lines
Test #19:
score: -100
Dangerous Syscalls
input:
1 1000000 324190 960223 187 199 240 453 559 628 670 753 755 1329 1330 1681 1904 2042 2061 2169 2183 2233 2258 2535 2555 2711 2718 2819 2951 3211 3294 3309 3342 3456 3485 3491 3782 3834 3854 3968 4205 4236 4312 4314 4340 4371 4596 4603 4734 4792 5133 5249 5273 5469 5895 5915 5977 6006 6029 6062 6089 ...