QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#102856 | #6382. LaLa and Spirit Summoning | hitonanode | WA | 2ms | 3532kb | C++17 | 32.1kb | 2023-05-03 19:04:56 | 2023-05-03 19:04:58 |
Judging History
answer
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif
#include <algorithm>
#include <cassert>
#include <vector>
// Directed graph library to find strongly connected components (強連結成分分解)
// 0-indexed directed graph
// Complexity: O(V + E)
struct DirectedGraphSCC {
int V; // # of Vertices
std::vector<std::vector<int>> to, from;
std::vector<int> used; // Only true/false
std::vector<int> vs;
std::vector<int> cmp;
int scc_num = -1;
DirectedGraphSCC(int V = 0) : V(V), to(V), from(V), cmp(V) {}
void _dfs(int v) {
used[v] = true;
for (auto t : to[v])
if (!used[t]) _dfs(t);
vs.push_back(v);
}
void _rdfs(int v, int k) {
used[v] = true;
cmp[v] = k;
for (auto t : from[v])
if (!used[t]) _rdfs(t, k);
}
void add_edge(int from_, int to_) {
assert(from_ >= 0 and from_ < V and to_ >= 0 and to_ < V);
to[from_].push_back(to_);
from[to_].push_back(from_);
}
// Detect strongly connected components and return # of them.
// Also, assign each vertex `v` the scc id `cmp[v]` (0-indexed)
int FindStronglyConnectedComponents() {
used.assign(V, false);
vs.clear();
for (int v = 0; v < V; v++)
if (!used[v]) _dfs(v);
used.assign(V, false);
scc_num = 0;
for (int i = (int)vs.size() - 1; i >= 0; i--)
if (!used[vs[i]]) _rdfs(vs[i], scc_num++);
return scc_num;
}
// Find and output the vertices that form a closed cycle.
// output: {v_1, ..., v_C}, where C is the length of cycle,
// {} if there's NO cycle (graph is DAG)
int _c, _init;
std::vector<int> _ret_cycle;
bool _dfs_detectcycle(int now, bool b0) {
if (now == _init and b0) return true;
for (auto nxt : to[now])
if (cmp[nxt] == _c and !used[nxt]) {
_ret_cycle.emplace_back(nxt), used[nxt] = 1;
if (_dfs_detectcycle(nxt, true)) return true;
_ret_cycle.pop_back();
}
return false;
}
std::vector<int> DetectCycle() {
int ns = FindStronglyConnectedComponents();
if (ns == V) return {};
std::vector<int> cnt(ns);
for (auto x : cmp) cnt[x]++;
_c = std::find_if(cnt.begin(), cnt.end(), [](int x) { return x > 1; }) - cnt.begin();
_init = std::find(cmp.begin(), cmp.end(), _c) - cmp.begin();
used.assign(V, false);
_ret_cycle.clear();
_dfs_detectcycle(_init, false);
return _ret_cycle;
}
// After calling `FindStronglyConnectedComponents()`, generate a new graph by uniting all
// vertices belonging to the same component(The resultant graph is DAG).
DirectedGraphSCC GenerateTopologicalGraph() {
DirectedGraphSCC newgraph(scc_num);
for (int s = 0; s < V; s++)
for (auto t : to[s]) {
if (cmp[s] != cmp[t]) newgraph.add_edge(cmp[s], cmp[t]);
}
return newgraph;
}
};
#include <cassert>
#include <iostream>
#include <vector>
// Bipartite matching of undirected bipartite graph (Hopcroft-Karp)
// https://ei1333.github.io/luzhiled/snippets/graph/hopcroft-karp.html
// Comprexity: O((V + E)sqrtV)
// int solve(): enumerate maximum number of matching / return -1 (if graph is not bipartite)
struct BipartiteMatching {
int V;
std::vector<std::vector<int>> to; // Adjacency list
std::vector<int> dist; // dist[i] = (Distance from i'th node)
std::vector<int> match; // match[i] = (Partner of i'th node) or -1 (No parter)
std::vector<int> used, vv;
std::vector<int> color; // color of each node(checking bipartition): 0/1/-1(not determined)
BipartiteMatching() = default;
BipartiteMatching(int V_) : V(V_), to(V_), match(V_, -1), used(V_), color(V_, -1) {}
void add_edge(int u, int v) {
assert(u >= 0 and u < V and v >= 0 and v < V and u != v);
to[u].push_back(v);
to[v].push_back(u);
}
void _bfs() {
dist.assign(V, -1);
std::vector<int> q;
int lq = 0;
for (int i = 0; i < V; i++) {
if (!color[i] and !used[i]) q.push_back(i), dist[i] = 0;
}
while (lq < int(q.size())) {
int now = q[lq++];
for (auto nxt : to[now]) {
int c = match[nxt];
if (c >= 0 and dist[c] == -1) q.push_back(c), dist[c] = dist[now] + 1;
}
}
}
bool _dfs(int now) {
vv[now] = true;
for (auto nxt : to[now]) {
int c = match[nxt];
if (c < 0 or (!vv[c] and dist[c] == dist[now] + 1 and _dfs(c))) {
match[nxt] = now, match[now] = nxt;
used[now] = true;
return true;
}
}
return false;
}
bool _color_bfs(int root) {
color[root] = 0;
std::vector<int> q{root};
int lq = 0;
while (lq < int(q.size())) {
int now = q[lq++], c = color[now];
for (auto nxt : to[now]) {
if (color[nxt] == -1) {
color[nxt] = !c, q.push_back(nxt);
} else if (color[nxt] == c) {
return false;
}
}
}
return true;
}
int solve() {
for (int i = 0; i < V; i++) {
if (color[i] == -1 and !_color_bfs(i)) return -1;
}
int ret = 0;
while (true) {
_bfs();
vv.assign(V, false);
int flow = 0;
for (int i = 0; i < V; i++) {
if (!color[i] and !used[i] and _dfs(i)) flow++;
}
if (!flow) break;
ret += flow;
}
return ret;
}
template <class OStream> friend OStream &operator<<(OStream &os, const BipartiteMatching &bm) {
os << "{N=" << bm.V << ':';
for (int i = 0; i < bm.V; i++) {
if (bm.match[i] > i) os << '(' << i << '-' << bm.match[i] << "),";
}
return os << '}';
}
};
// Dulmage–Mendelsohn (DM) decomposition (DM 分解)
// return: [(W+0, W-0), (W+1,W-1),...,(W+(k+1), W-(k+1))]
// : sequence of pair (left vetrices, right vertices)
// - |W+0| < |W-0| or both empty
// - |W+i| = |W-i| (i = 1, ..., k)
// - |W+(k+1)| > |W-(k+1)| or both empty
// - W is topologically sorted
// Example:
// (2, 2, [(0,0), (0,1), (1,0)]) => [([],[]),([0,],[1,]),([1,],[0,]),([],[]),]
// Complexity: O(N + (N + M) sqrt(N))
// Verified: https://yukicoder.me/problems/no/1615
std::vector<std::pair<std::vector<int>, std::vector<int>>>
dulmage_mendelsohn(int L, int R, const std::vector<std::pair<int, int>> &edges) {
for (auto p : edges) {
assert(0 <= p.first and p.first < L);
assert(0 <= p.second and p.second < R);
}
BipartiteMatching bm(L + R);
for (auto p : edges) bm.add_edge(p.first, L + p.second);
bm.solve();
DirectedGraphSCC scc(L + R);
for (auto p : edges) scc.add_edge(p.first, L + p.second);
for (int l = 0; l < L; ++l) {
if (bm.match[l] >= L) scc.add_edge(bm.match[l], l);
}
int nscc = scc.FindStronglyConnectedComponents();
std::vector<int> cmp_map(nscc, -2);
std::vector<int> vis(L + R);
std::vector<int> st;
for (int c = 0; c < 2; ++c) {
std::vector<std::vector<int>> to(L + R);
auto color = [&L](int x) { return x >= L; };
for (auto p : edges) {
int u = p.first, v = L + p.second;
if (color(u) != c) std::swap(u, v);
to[u].push_back(v);
if (bm.match[u] == v) to[v].push_back(u);
}
for (int i = 0; i < L + R; ++i) {
if (bm.match[i] >= 0 or color(i) != c or vis[i]) continue;
vis[i] = 1, st = {i};
while (!st.empty()) {
int now = st.back();
cmp_map[scc.cmp[now]] = c - 1;
st.pop_back();
for (int nxt : to[now]) {
if (!vis[nxt]) vis[nxt] = 1, st.push_back(nxt);
}
}
}
}
int nset = 1;
for (int n = 0; n < nscc; ++n) {
if (cmp_map[n] == -2) cmp_map[n] = nset++;
}
for (auto &x : cmp_map) {
if (x == -1) x = nset;
}
nset++;
std::vector<std::pair<std::vector<int>, std::vector<int>>> groups(nset);
for (int l = 0; l < L; ++l) {
if (bm.match[l] < 0) continue;
int c = cmp_map[scc.cmp[l]];
groups[c].first.push_back(l);
groups[c].second.push_back(bm.match[l] - L);
}
for (int l = 0; l < L; ++l) {
if (bm.match[l] >= 0) continue;
int c = cmp_map[scc.cmp[l]];
groups[c].first.push_back(l);
}
for (int r = 0; r < R; ++r) {
if (bm.match[L + r] >= 0) continue;
int c = cmp_map[scc.cmp[L + r]];
groups[c].second.push_back(r);
}
return groups;
}
#include <algorithm>
#include <cassert>
#include <deque>
#include <fstream>
#include <functional>
#include <limits>
#include <queue>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
template <typename T, T INF = std::numeric_limits<T>::max() / 2, int INVALID = -1>
struct shortest_path {
int V, E;
bool single_positive_weight;
T wmin, wmax;
std::vector<std::pair<int, T>> tos;
std::vector<int> head;
std::vector<std::tuple<int, int, T>> edges;
void build_() {
if (int(tos.size()) == E and int(head.size()) == V + 1) return;
tos.resize(E);
head.assign(V + 1, 0);
for (const auto &e : edges) ++head[std::get<0>(e) + 1];
for (int i = 0; i < V; ++i) head[i + 1] += head[i];
auto cur = head;
for (const auto &e : edges) {
tos[cur[std::get<0>(e)]++] = std::make_pair(std::get<1>(e), std::get<2>(e));
}
}
shortest_path(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0) {}
void add_edge(int s, int t, T w) {
assert(0 <= s and s < V);
assert(0 <= t and t < V);
edges.emplace_back(s, t, w);
++E;
if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false;
wmin = std::min(wmin, w);
wmax = std::max(wmax, w);
}
void add_bi_edge(int u, int v, T w) {
add_edge(u, v, w);
add_edge(v, u, w);
}
std::vector<T> dist;
std::vector<int> prev;
// Dijkstra algorithm
// - Requirement: wmin >= 0
// - Complexity: O(E log E)
using Pque = std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>,
std::greater<std::pair<T, int>>>;
template <class Heap = Pque> void dijkstra(int s, int t = INVALID) {
assert(0 <= s and s < V);
build_();
dist.assign(V, INF);
prev.assign(V, INVALID);
dist[s] = 0;
Heap pq;
pq.emplace(0, s);
while (!pq.empty()) {
T d;
int v;
std::tie(d, v) = pq.top();
pq.pop();
if (t == v) return;
if (dist[v] < d) continue;
for (int e = head[v]; e < head[v + 1]; ++e) {
const auto &nx = tos[e];
T dnx = d + nx.second;
if (dist[nx.first] > dnx) {
dist[nx.first] = dnx, prev[nx.first] = v;
pq.emplace(dnx, nx.first);
}
}
}
}
// Dijkstra algorithm
// - Requirement: wmin >= 0
// - Complexity: O(V^2 + E)
void dijkstra_vquad(int s, int t = INVALID) {
assert(0 <= s and s < V);
build_();
dist.assign(V, INF);
prev.assign(V, INVALID);
dist[s] = 0;
std::vector<char> fixed(V, false);
while (true) {
int r = INVALID;
T dr = INF;
for (int i = 0; i < V; i++) {
if (!fixed[i] and dist[i] < dr) r = i, dr = dist[i];
}
if (r == INVALID or r == t) break;
fixed[r] = true;
int nxt;
T dx;
for (int e = head[r]; e < head[r + 1]; ++e) {
std::tie(nxt, dx) = tos[e];
if (dist[nxt] > dist[r] + dx) dist[nxt] = dist[r] + dx, prev[nxt] = r;
}
}
}
// Bellman-Ford algorithm
// - Requirement: no negative loop
// - Complexity: O(VE)
bool bellman_ford(int s, int nb_loop) {
assert(0 <= s and s < V);
build_();
dist.assign(V, INF), prev.assign(V, INVALID);
dist[s] = 0;
for (int l = 0; l < nb_loop; l++) {
bool upd = false;
for (int v = 0; v < V; v++) {
if (dist[v] == INF) continue;
for (int e = head[v]; e < head[v + 1]; ++e) {
const auto &nx = tos[e];
T dnx = dist[v] + nx.second;
if (dist[nx.first] > dnx) dist[nx.first] = dnx, prev[nx.first] = v, upd = true;
}
}
if (!upd) return true;
}
return false;
}
// Bellman-ford algorithm using deque
// - Requirement: no negative loop
// - Complexity: O(VE)
void spfa(int s) {
assert(0 <= s and s < V);
build_();
dist.assign(V, INF);
prev.assign(V, INVALID);
dist[s] = 0;
std::deque<int> q;
std::vector<char> in_queue(V);
q.push_back(s), in_queue[s] = 1;
while (!q.empty()) {
int now = q.front();
q.pop_front(), in_queue[now] = 0;
for (int e = head[now]; e < head[now + 1]; ++e) {
const auto &nx = tos[e];
T dnx = dist[now] + nx.second;
int nxt = nx.first;
if (dist[nxt] > dnx) {
dist[nxt] = dnx;
if (!in_queue[nxt]) {
if (q.size() and dnx < dist[q.front()]) { // Small label first optimization
q.push_front(nxt);
} else {
q.push_back(nxt);
}
prev[nxt] = now, in_queue[nxt] = 1;
}
}
}
}
}
// 01-BFS
// - Requirement: all weights must be 0 or w (positive constant).
// - Complexity: O(V + E)
void zero_one_bfs(int s, int t = INVALID) {
assert(0 <= s and s < V);
build_();
dist.assign(V, INF), prev.assign(V, INVALID);
dist[s] = 0;
std::vector<int> q(V * 4);
int ql = V * 2, qr = V * 2;
q[qr++] = s;
while (ql < qr) {
int v = q[ql++];
if (v == t) return;
for (int e = head[v]; e < head[v + 1]; ++e) {
const auto &nx = tos[e];
T dnx = dist[v] + nx.second;
if (dist[nx.first] > dnx) {
dist[nx.first] = dnx, prev[nx.first] = v;
if (nx.second) {
q[qr++] = nx.first;
} else {
q[--ql] = nx.first;
}
}
}
}
}
// Dial's algorithm
// - Requirement: wmin >= 0
// - Complexity: O(wmax * V + E)
void dial(int s, int t = INVALID) {
assert(0 <= s and s < V);
build_();
dist.assign(V, INF), prev.assign(V, INVALID);
dist[s] = 0;
std::vector<std::vector<std::pair<int, T>>> q(wmax + 1);
q[0].emplace_back(s, dist[s]);
int ninq = 1;
int cur = 0;
T dcur = 0;
for (; ninq; ++cur, ++dcur) {
if (cur == wmax + 1) cur = 0;
while (!q[cur].empty()) {
int v = q[cur].back().first;
T dnow = q[cur].back().second;
q[cur].pop_back(), --ninq;
if (v == t) return;
if (dist[v] < dnow) continue;
for (int e = head[v]; e < head[v + 1]; ++e) {
const auto &nx = tos[e];
T dnx = dist[v] + nx.second;
if (dist[nx.first] > dnx) {
dist[nx.first] = dnx, prev[nx.first] = v;
int nxtcur = cur + int(nx.second);
if (nxtcur >= int(q.size())) nxtcur -= q.size();
q[nxtcur].emplace_back(nx.first, dnx), ++ninq;
}
}
}
}
}
// Solver for DAG
// - Requirement: graph is DAG
// - Complexity: O(V + E)
bool dag_solver(int s) {
assert(0 <= s and s < V);
build_();
dist.assign(V, INF), prev.assign(V, INVALID);
dist[s] = 0;
std::vector<int> indeg(V, 0);
std::vector<int> q(V * 2);
int ql = 0, qr = 0;
q[qr++] = s;
while (ql < qr) {
int now = q[ql++];
for (int e = head[now]; e < head[now + 1]; ++e) {
const auto &nx = tos[e];
++indeg[nx.first];
if (indeg[nx.first] == 1) q[qr++] = nx.first;
}
}
ql = qr = 0;
q[qr++] = s;
while (ql < qr) {
int now = q[ql++];
for (int e = head[now]; e < head[now + 1]; ++e) {
const auto &nx = tos[e];
--indeg[nx.first];
if (dist[nx.first] > dist[now] + nx.second)
dist[nx.first] = dist[now] + nx.second, prev[nx.first] = now;
if (indeg[nx.first] == 0) q[qr++] = nx.first;
}
}
return *max_element(indeg.begin(), indeg.end()) == 0;
}
// Retrieve a sequence of vertex ids that represents shortest path [s, ..., goal]
// If not reachable to goal, return {}
std::vector<int> retrieve_path(int goal) const {
assert(int(prev.size()) == V);
assert(0 <= goal and goal < V);
if (dist[goal] == INF) return {};
std::vector<int> ret{goal};
while (prev[goal] != INVALID) {
goal = prev[goal];
ret.push_back(goal);
}
std::reverse(ret.begin(), ret.end());
return ret;
}
void solve(int s, int t = INVALID) {
if (wmin >= 0) {
if (single_positive_weight) {
zero_one_bfs(s, t);
} else if (wmax <= 10) {
dial(s, t);
} else {
if ((long long)V * V < (E << 4)) {
dijkstra_vquad(s, t);
} else {
dijkstra(s, t);
}
}
} else {
bellman_ford(s, V);
}
}
// Warshall-Floyd algorithm
// - Requirement: no negative loop
// - Complexity: O(E + V^3)
std::vector<std::vector<T>> floyd_warshall() {
build_();
std::vector<std::vector<T>> dist2d(V, std::vector<T>(V, INF));
for (int i = 0; i < V; i++) {
dist2d[i][i] = 0;
for (const auto &e : edges) {
int s = std::get<0>(e), t = std::get<1>(e);
dist2d[s][t] = std::min(dist2d[s][t], std::get<2>(e));
}
}
for (int k = 0; k < V; k++) {
for (int i = 0; i < V; i++) {
if (dist2d[i][k] == INF) continue;
for (int j = 0; j < V; j++) {
if (dist2d[k][j] == INF) continue;
dist2d[i][j] = std::min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]);
}
}
}
return dist2d;
}
void to_dot(std::string filename = "shortest_path") const {
std::ofstream ss(filename + ".DOT");
ss << "digraph{\n";
build_();
for (int i = 0; i < V; i++) {
for (int e = head[i]; e < head[i + 1]; ++e) {
ss << i << "->" << tos[e].first << "[label=" << tos[e].second << "];\n";
}
}
ss << "}\n";
ss.close();
return;
}
};
#include <cassert>
#include <vector>
// Partition matroid (partitional matroid) : direct sum of uniform matroids
class PartitionMatroid {
using Element = int;
int M;
std::vector<std::vector<Element>> parts;
std::vector<int> belong;
std::vector<int> R;
std::vector<int> cnt;
std::vector<std::vector<Element>> circuits;
public:
// parts: partition of [0, 1, ..., M - 1]
// R: only R[i] elements from parts[i] can be chosen for each i.
PartitionMatroid(int M, const std::vector<std::vector<int>> &parts_, const std::vector<int> &R_)
: M(M), parts(parts_), belong(M, -1), R(R_) {
assert(parts.size() == R.size());
for (int i = 0; i < int(parts.size()); i++) {
for (Element e : parts[i]) belong[e] = i;
}
for (Element e = 0; e < M; e++) {
// assert(belong[e] != -1);
if (belong[e] == -1) {
belong[e] = parts.size();
parts.push_back({e});
R.push_back(1);
}
}
}
int size() const { return M; }
template <class State> void set(const State &I) {
cnt = R;
for (int e = 0; e < M; e++) {
if (I[e]) cnt[belong[e]]--;
}
circuits.assign(cnt.size(), {});
for (int e = 0; e < M; e++) {
if (I[e] and cnt[belong[e]] == 0) circuits[belong[e]].push_back(e);
}
}
std::vector<Element> circuit(const Element e) const {
assert(0 <= e and e < M);
int p = belong[e];
if (cnt[p] == 0) {
auto ret = circuits[p];
ret.push_back(e);
return ret;
}
return {};
}
};
// (Min weight) matroid intersection solver
// Algorithm based on http://dopal.cs.uec.ac.jp/okamotoy/lect/2015/matroid/
// Complexity: O(CE^2 + E^3) (C : circuit query, non-weighted)
template <class M1, class M2, class T = int>
std::vector<bool> MatroidIntersection(M1 matroid1, M2 matroid2, std::vector<bool> I) {
using State = std::vector<bool>;
using Element = int;
assert(matroid1.size() == matroid2.size());
const int M = matroid1.size();
const Element gs = M, gt = M + 1;
// State I(M);
while (true) {
shortest_path<T> sssp(M + 2);
matroid1.set(I);
matroid2.set(I);
for (int e = 0; e < M; e++) {
if (I[e]) continue;
auto c1 = matroid1.circuit(e), c2 = matroid2.circuit(e);
if (c1.empty()) sssp.add_edge(e, gt, 0);
for (Element f : c1) {
if (f != e) sssp.add_edge(e, f, 1);
}
if (c2.empty()) sssp.add_edge(gs, e, 1);
for (Element f : c2) {
if (f != e) sssp.add_edge(f, e, 1);
}
}
sssp.solve(gs, gt);
auto aug_path = sssp.retrieve_path(gt);
if (aug_path.empty()) break;
for (auto e : aug_path) {
if (e != gs and e != gt) I[e] = !I[e];
}
}
return I;
}
int N, M;
vector<pint> edges;
vector<vector<int>> to;
struct RigidityMatroid {
using Element = int;
// vector<bool> I;
vector<int> eids;
int size() { return M; }; // # of elements of set we consider
template <class State = std::vector<bool>> void set(State I_) {
eids.clear();
for (int e = 0; e < size(); ++e) {
if (I_[e]) eids.push_back(e);
}
}
std::vector<Element> circuit(Element e) const {
std::vector<pair<int, int>> dm_edges;
const int u0 = edges.at(e).first, u1 = edges.at(e).second;
for (int i = 0; i < eids.size(); ++i) {
const int e = eids.at(i);
for (int v : {edges.at(e).first, edges.at(e).second}) {
if (v == u0 or v == u1) continue;
for (int d = 0; d < 2; ++d) dm_edges.emplace_back(i, v * 2 + d);
}
}
auto dm = dulmage_mendelsohn(eids.size(), N * 2, dm_edges).back();
std::vector<Element> ret;
for (int i : dm.first) ret.push_back(eids.at(i));
return ret;
}
};
int main() {
cin >> N >> M;
to.resize(N);
vector<vector<int>> color2e(M);
vector<int> color(M);
vector<int> lim(M, 1);
REP(e, M) {
int u, v, c;
cin >> u >> v >> c;
to.at(u).push_back(v);
to.at(v).push_back(u);
color.at(e) = c;
edges.emplace_back(u, v);
color2e.at(c).push_back(e);
}
vector<bool> I(M);
vector<bitset<200>> conn(N);
vector<int> used_color(M);
REP(e, M) {
auto [a, b] = edges.at(e);
if (used_color.at(color.at(e))) continue;
if ((conn[a] & conn[b]).any()) continue;
I[e] = 1;
conn[a].set(b);
conn[b].set(a);
used_color.at(color.at(e)) = 1;
}
PartitionMatroid matroid2(M, color2e, lim);
RigidityMatroid mat;
auto sol = MatroidIntersection(mat, matroid2, I);
dbg(sol);
cout << N * 2 - accumulate(ALL(sol), 0) << endl;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 2ms
memory: 3424kb
input:
3 3 0 1 0 0 2 0 1 2 0
output:
5
result:
ok 1 number(s): "5"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3476kb
input:
3 3 0 1 0 0 2 1 1 2 2
output:
3
result:
ok 1 number(s): "3"
Test #3:
score: 0
Accepted
time: 2ms
memory: 3468kb
input:
4 4 0 1 0 1 2 1 2 3 2 0 3 3
output:
4
result:
ok 1 number(s): "4"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3532kb
input:
5 4 0 1 0 1 2 1 2 3 2 3 4 3
output:
6
result:
ok 1 number(s): "6"
Test #5:
score: 0
Accepted
time: 2ms
memory: 3500kb
input:
2 0
output:
4
result:
ok 1 number(s): "4"
Test #6:
score: 0
Accepted
time: 2ms
memory: 3384kb
input:
2 1 0 1 0
output:
3
result:
ok 1 number(s): "3"
Test #7:
score: -100
Wrong Answer
time: 2ms
memory: 3480kb
input:
2 2 0 1 0 0 1 1
output:
2
result:
wrong answer 1st numbers differ - expected: '3', found: '2'