QOJ.ac

QOJ

Time Limit: 1 s Memory Limit: 1024 MB Total points: 100

# 4222. 题

统计

给定长度为 $3 n$、值域为 $[0, 3]$ 的整数序列 $S = s_1 s_2 \cdots s_{3 n}$。你需要首先将 $S$ 中的每个 $0$ 替换为 $[1, 3]$ 中的任意一个整数,得到序列 $T = t_1 t_2 \cdots t_{3 n}$,然后给出 $n$ 个长度为 $3$ 的整数序列 ${\{ a_{i, 1}, a_{i, 2}, a_{i, 3} \}}_{1 \le i \le n}$,使得

  • $\forall 1 \le i \le n$,$1 \le a_{i, 1} < a_{i, 2} < a_{i, 3} \le 3 n$;
  • $\forall (i_1, j_1) \ne (i_2, j_2)$,$a_{i_1, j_1} \ne a_{i_2, j_2}$;
  • $\forall 1 \le i \le n$,$\{ t_{a_{i, 1}}, t_{a_{i, 2}}, t_{a_{i, 3}} \}$ 是 $\{ 1, 2, 3 \}$ 的一个排列且逆序对数为奇数。

认为两个方案本质不同当且仅当序列 $T$ 不同或存在 $a_{i, j}$($1 \le i \le n$,$1 \le j \le 3$)不同,求以上操作的本质不同的方案数,对 $({10}^9 + 7)$ 取模。

输入格式

本题有多组测试数据

输入的第一行包含一个正整数 $C$ 表示测试数据组数。

对于每组测试数据,第一行一个整数 $n$,接下来一行一个长度为 $3 n$ 的字符串描述序列 $S$。

输出格式

对于每组测试数据,输出一行一个整数表示方案数对 $({10}^9 + 7)$ 取模的结果。

样例数据

样例 1 输入

5
1
123
1
100
1
000
2
321321
2
000001

样例 1 输出

0
1
3
6
60

样例 1 解释

前三组测试数据中 $n = 1$,故 $\{ a_{1, 1}, a_{1, 2}, a_{1, 3} \} = \{ 1, 2, 3 \}$。

对于第一组测试数据,只能有 $T = 123$,而 $\{ 1, 2, 3 \}$ 的逆序对数为 $0$ 不合法,故不存在方案。

对于第二组测试数据,$T = 123$ 不合法,而 $T = 132$ 时 $\{ 1, 3, 2 \}$ 的逆序对数为 $1$ 合法,故存在一个方案。

对于第三组测试数据,取 $T = 132$,$T = 213$,$T = 321$ 可以得到三个合法方案。

对于第四组测试数据,$T = 321321$,有如下六种方案:

  • $\{ a_{1, 1}, a_{1, 2}, a_{1, 3} \} = \{ 1, 2, 3 \}$,$\{ a_{2, 1}, a_{2, 2}, a_{2, 3} \} = \{ 4, 5, 6 \}$
  • $\{ a_{1, 1}, a_{1, 2}, a_{1, 3} \} = \{ 4, 5, 6 \}$,$\{ a_{2, 1}, a_{2, 2}, a_{2, 3} \} = \{ 1, 2, 3 \}$
  • $\{ a_{1, 1}, a_{1, 2}, a_{1, 3} \} = \{ 1, 2, 6 \}$,$\{ a_{2, 1}, a_{2, 2}, a_{2, 3} \} = \{ 3, 4, 5 \}$
  • $\{ a_{1, 1}, a_{1, 2}, a_{1, 3} \} = \{ 3, 4, 5 \}$,$\{ a_{2, 1}, a_{2, 2}, a_{2, 3} \} = \{ 1, 2, 6 \}$
  • $\{ a_{1, 1}, a_{1, 2}, a_{1, 3} \} = \{ 1, 5, 6 \}$,$\{ a_{2, 1}, a_{2, 2}, a_{2, 3} \} = \{ 2, 3, 4 \}$
  • $\{ a_{1, 1}, a_{1, 2}, a_{1, 3} \} = \{ 2, 3, 4 \}$,$\{ a_{2, 1}, a_{2, 2}, a_{2, 3} \} = \{ 1, 5, 6 \}$

样例 2

见下发文件。

该组样例中五组数据的 $n$ 分别为 $3, 5, 8, 12, 17$。

样例 3

见下发文件。

该组样例满足特殊性质 A,五组数据的 $n$ 分别为 $2, 4, 7, 15, 19$。

子任务

对于所有测试数据,$1 \le C \le 5$,$1 \le n \le 19$,字符串 $S$ 的长度为 $3 n$ 且仅由 $0, 1, 2, 3$ 构成。

测试点编号 $n \le$ 特殊性质
$1 $ $1$
$2 $ $2$
$3 $ $3$
$4$ $5$ A
$5$ $7$
$6$ $10$
$7$ $13$ A
$8$ $16$
$9$ $18$
$10$ $19$

特殊性质 A:字符串 $S$ 由全 $0$ 的字符串构成。

提示

请注意程序的空间消耗。