QOJ.ac

QOJ

IDSubmission IDProblemHackerOwnerResultSubmit timeJudge time
#457#254795#7749. A Simple MST Problemucup-team635ucup-team635Failed.2023-11-18 15:02:592023-11-18 15:02:59

Details

Extra Test:

Invalid Input

input:

8850
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2 113
2...

output:


result:

FAIL 

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#254795#7749. A Simple MST Problemucup-team635#TL 524ms38064kbRust9.8kb2023-11-18 13:54:292023-11-22 20:10:30

answer

use std::io::Write;

fn run() {
    input! {
        t: usize,
        ask: [(usize, usize); t],
    }
    let m = 1000000;
    let sieve = Sieve::new(m);
    let mut memo = InitArray::new(false, m + 1);
    let mut norm = vec![1; m + 1];
    let mut key = vec![0; m + 1];
    for (i, (norm, key)) in norm.iter_mut().zip(key.iter_mut()).enumerate().skip(1) {
        memo.init();
        let mut v = i;
        while let Some(p) = sieve.factor(v) {
            v /= p;
            if !memo[p] {
                *norm *= p;
                *key += 1;
                memo[p] = true;
            }
        }
    }
    let (key, norm) = (key, norm);
    let mut calc = |l: usize, r: usize| -> usize {
        if l == 1 {
            return key[l..=r].iter().sum::<usize>();
        }
        if r - l <= 120 {
            let mut edge = vec![];
            for (i, a) in (l..=r).enumerate() {
                for (j, b) in (l..=r).enumerate().take(i) {
                    let w = key[a] + key[b] - key[binary_gcd(a, b)];
                    edge.push((w, i, j));
                }
            }
            let mut dsu = DSU::new(r - l + 1);
            edge.sort();
            let mut ans = 0;
            for (c, a, b) in edge {
                if dsu.unite(a, b).is_some() {
                    ans += c;
                }
            }
            return ans;
        }
        let mut ord = (l..=r).collect::<Vec<_>>();
        ord.sort_by_key(|v| key[*v]);
        assert!(key[ord[0]] <= 1);
        memo.init();
        let mut ans = 0;
        let mut dp = vec![];
        for v in ord {
            ans += key[v];
            dp.clear();
            dp.push(1);
            let mut find = false;
            let mut x = norm[v];
            'outer: while let Some(p) = sieve.factor(x) {
                let len = dp.len();
                for i in 0..len {
                    let v = dp[i] * p;
                    if memo[v] {
                        find = true;
                        break 'outer;
                    }
                    dp.push(v);
                }
                x /= p;
            }
            if !find {
                ans += 1;
                memo[norm[v]] = true;
            }
        }
        ans - 2
    };
    let out = std::io::stdout();
    let mut out = std::io::BufWriter::new(out.lock());
    for (l, r) in ask {
        writeln!(out, "{}", calc(l, r)).ok();
    }
}

fn main() {
    run();
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------
// ---------- begin enumerate prime ----------
fn enumerate_prime<F>(n: usize, mut f: F)
where
    F: FnMut(usize),
{
    assert!(1 <= n && n <= 5 * 10usize.pow(8));
    let batch = (n as f64).sqrt().ceil() as usize;
    let mut is_prime = vec![true; batch + 1];
    for i in (2..).take_while(|p| p * p <= batch) {
        if is_prime[i] {
            let mut j = i * i;
            while let Some(p) = is_prime.get_mut(j) {
                *p = false;
                j += i;
            }
        }
    }
    let mut prime = vec![];
    for (i, p) in is_prime.iter().enumerate().skip(2) {
        if *p && i <= n {
            f(i);
            prime.push(i);
        }
    }
    let mut l = batch + 1;
    while l <= n {
        let r = std::cmp::min(l + batch, n + 1);
        is_prime.clear();
        is_prime.resize(r - l, true);
        for &p in prime.iter() {
            let mut j = (l + p - 1) / p * p - l;
            while let Some(is_prime) = is_prime.get_mut(j) {
                *is_prime = false;
                j += p;
            }
        }
        for (i, _) in is_prime.iter().enumerate().filter(|p| *p.1) {
            f(i + l);
        }
        l += batch;
    }
}
// ---------- end enumerate prime ----------
//---------- begin union_find ----------
pub struct DSU {
    p: Vec<i32>,
}
impl DSU {
    pub fn new(n: usize) -> DSU {
        assert!(n < std::i32::MAX as usize);
        DSU { p: vec![-1; n] }
    }
    pub fn init(&mut self) {
        self.p.iter_mut().for_each(|p| *p = -1);
    }
    pub fn root(&self, mut x: usize) -> usize {
        assert!(x < self.p.len());
        while self.p[x] >= 0 {
            x = self.p[x] as usize;
        }
        x
    }
    pub fn same(&self, x: usize, y: usize) -> bool {
        assert!(x < self.p.len() && y < self.p.len());
        self.root(x) == self.root(y)
    }
    pub fn unite(&mut self, x: usize, y: usize) -> Option<(usize, usize)> {
        assert!(x < self.p.len() && y < self.p.len());
        let mut x = self.root(x);
        let mut y = self.root(y);
        if x == y {
            return None;
        }
        if self.p[x] > self.p[y] {
            std::mem::swap(&mut x, &mut y);
        }
        self.p[x] += self.p[y];
        self.p[y] = x as i32;
        Some((x, y))
    }
    pub fn parent(&self, x: usize) -> Option<usize> {
        assert!(x < self.p.len());
        let p = self.p[x];
        if p >= 0 {
            Some(p as usize)
        } else {
            None
        }
    }
    pub fn sum<F>(&self, mut x: usize, mut f: F) -> usize
    where
        F: FnMut(usize),
    {
        while let Some(p) = self.parent(x) {
            f(x);
            x = p;
        }
        x
    }
    pub fn size(&self, x: usize) -> usize {
        assert!(x < self.p.len());
        let r = self.root(x);
        (-self.p[r]) as usize
    }
}
//---------- end union_find ----------
// ---------- begin init array ----------
#[derive(Clone)]
pub struct InitArray<T> {
    data: Vec<T>,
    used: Vec<bool>,
    list: Vec<u32>,
    zero: T,
}

impl<T: Copy> InitArray<T> {
    pub fn new(zero: T, size: usize) -> Self {
        InitArray {
            data: vec![zero; size],
            used: vec![false; size],
            list: vec![],
            zero: zero,
        }
    }
    pub fn init(&mut self) {
        self.init_with(|_, _| ());
    }
    pub fn init_with<F>(&mut self, mut f: F)
    where
        F: FnMut(usize, T),
    {
        for x in self.list.drain(..) {
            let x = x as usize;
            self.used[x] = false;
            let v = std::mem::replace(&mut self.data[x], self.zero);
            f(x, v);
        }
    }
}

impl<T> std::ops::Index<usize> for InitArray<T> {
    type Output = T;
    fn index(&self, pos: usize) -> &Self::Output {
        &self.data[pos]
    }
}

impl<T> std::ops::IndexMut<usize> for InitArray<T> {
    fn index_mut(&mut self, pos: usize) -> &mut Self::Output {
        if !self.used[pos] {
            self.used[pos] = true;
            self.list.push(pos as u32);
        }
        &mut self.data[pos]
    }
}
// ---------- end init array ----------
// --------- end sieve ----------
pub struct Sieve {
    size: usize,
    factor: Vec<usize>,
}

impl Sieve {
    pub fn new(size: usize) -> Sieve {
        let mut factor = (0..(size + 1)).collect::<Vec<_>>();
        for i in (2..).take_while(|p| p * p <= size) {
            if i == factor[i] {
                for j in i..(size / i + 1) {
                    factor[j * i] = i;
                }
            }
        }
        Sieve {
            size: size,
            factor: factor,
        }
    }
    pub fn factor(&self, n: usize) -> Option<usize> {
        assert!(n <= self.size);
        if n == 1 {
            None
        } else {
            Some(self.factor[n])
        }
    }
    pub fn factorize(&self, mut n: usize, res: &mut Vec<usize>) {
        assert!(n <= self.size);
        res.clear();
        res.push(1);
        while let Some(p) = self.factor(n) {
            let len = res.len();
            while n % p == 0 {
                n /= p;
                for _ in 0..len {
                    let v = res[res.len() - len] * p;
                    res.push(v);
                }
            }
        }
    }
}
// --------- end sieve ----------
// ---------- begin binary_gcd ----------
pub fn binary_gcd(a: usize, b: usize) -> usize {
    if a == 0 || b == 0 {
        return a + b;
    }
    let x = a.trailing_zeros();
    let y = b.trailing_zeros();
    let mut a = a >> x;
    let mut b = b >> y;
    while a != b {
        let x = (a ^ b).trailing_zeros();
        if a < b {
            std::mem::swap(&mut a, &mut b);
        }
        a = (a - b) >> x;
    }
    a << x.min(y)
}
// ---------- end binary_gcd ----------