#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
struct ModLong61 {
static constexpr unsigned long long M = (1ULL << 61) - 1;
unsigned long long x;
constexpr ModLong61() : x(0ULL) {}
constexpr ModLong61(unsigned x_) : x(x_) {}
constexpr ModLong61(unsigned long long x_) : x(x_ % M) {}
constexpr ModLong61(int x_) : x((x_ < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
constexpr ModLong61(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModLong61 &operator+=(const ModLong61 &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModLong61 &operator-=(const ModLong61 &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModLong61 &operator*=(const ModLong61 &a) {
const unsigned __int128 y = static_cast<unsigned __int128>(x) * a.x;
x = (y >> 61) + (y & M);
x = (x >= M) ? (x - M) : x;
return *this;
}
ModLong61 &operator/=(const ModLong61 &a) { return (*this *= a.inv()); }
ModLong61 pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModLong61 a = *this, b = 1ULL; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModLong61 inv() const {
unsigned long long a = M, b = x; long long y = 0, z = 1;
for (; b; ) { const unsigned long long q = a / b; const unsigned long long c = a - q * b; a = b; b = c; const long long w = y - static_cast<long long>(q) * z; y = z; z = w; }
assert(a == 1ULL); return ModLong61(y);
}
ModLong61 operator+() const { return *this; }
ModLong61 operator-() const { ModLong61 a; a.x = x ? (M - x) : 0ULL; return a; }
ModLong61 operator+(const ModLong61 &a) const { return (ModLong61(*this) += a); }
ModLong61 operator-(const ModLong61 &a) const { return (ModLong61(*this) -= a); }
ModLong61 operator*(const ModLong61 &a) const { return (ModLong61(*this) *= a); }
ModLong61 operator/(const ModLong61 &a) const { return (ModLong61(*this) /= a); }
template <class T> friend ModLong61 operator+(T a, const ModLong61 &b) { return (ModLong61(a) += b); }
template <class T> friend ModLong61 operator-(T a, const ModLong61 &b) { return (ModLong61(a) -= b); }
template <class T> friend ModLong61 operator*(T a, const ModLong61 &b) { return (ModLong61(a) *= b); }
template <class T> friend ModLong61 operator/(T a, const ModLong61 &b) { return (ModLong61(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModLong61 &a) const { return (x == a.x); }
bool operator!=(const ModLong61 &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModLong61 &a) { return os << a.x; }
};
#include <chrono>
#ifdef LOCAL
mt19937_64 rng(58);
#else
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
#endif
using Mint = ModLong61;
int N, M;
vector<int> A, B;
vector<int> dims;
vector<Mint> f[100'010][20];
vector<Mint> g[100'010];
int main() {
for (; ~scanf("%d%d", &N, &M); ) {
A.resize(M);
B.resize(M);
for (int i = 0; i < M; ++i) {
scanf("%d%d", &A[i], &B[i]);
--A[i];
--B[i];
}
vector<vector<int>> graph(N), hparg(N);
for (int i = 0; i < M; ++i) {
graph[A[i]].push_back(B[i]);
hparg[B[i]].push_back(A[i]);
}
const int K = graph[0].size();
vector<int> ks(N, -1);
for (int k = 0; k < K; ++k) {
ks[graph[0][k]] = k;
}
dims.assign(N, 0);
for (int v = 1; v < N; ++v) {
int m = 0;
if (~ks[v]) {
g[m].assign(K, 0);
g[m][ks[v]] = 1;
++m;
}
for (const int u : hparg[v]) if (u) {
g[m].assign(K, 0);
for (int i = 0; i < dims[u]; ++i) {
const Mint coef = (unsigned long long)rng();
for (int k = 0; k < K; ++k) {
g[m][k] += coef * f[u][i][k];
}
}
++m;
}
int r = 0;
for (int h = 0; h < K; ++h) {
for (int i = r; i < m; ++i) if (g[i][h]) {
swap(g[r], g[i]);
break;
}
if (r < m && g[r][h]) {
const Mint s = g[r][h].inv();
for (int j = h; j < K; ++j) g[r][j] *= s;
for (int i = r + 1; i < m; ++i) {
const Mint t = g[i][h];
if (t) for (int j = h; j < K; ++j) g[i][j] -= t * g[r][j];
}
++r;
}
}
dims[v] = r;
for (int i = 0; i < r; ++i) {
f[v][i].swap(g[i]);
}
}
for (int v = 1; v < N; ++v) {
if (v > 1) printf(" ");
printf("%d", dims[v]);
}
puts("");
}
return 0;
}