QOJ.ac

QOJ

IDSubmission IDProblemHackerOwnerResultSubmit timeJudge time
#1115#709274#9542. Friendship is Magicucup-team087ucup-team087Failed.2024-11-04 13:37:542024-11-04 17:11:02

Details

Extra Test:

Accepted
time: 681ms
memory: 27928kb

input:

1000
884256797641247729 897228061220452626
142998370077068555 652494557377908801
785508265860690706 897260692566177192
184575086009276212 817131482319504833
501440125162726434 524629041477830664
724912176661991483 938719216099464384
458496207744939597 675852376580333515
265915417938150571 5811251315...

output:

580769527
967208216
444954860
420358472
335970433
515309560
18933050
711818404
546291388
506482253
723570874
508984677
972004327
443299413
613004884
960685250
308287212
202184317
359342898
997156930
443640137
753276885
931818855
151965280
10518646
891045982
831774532
914382511
817139191
964376129
30...

result:

ok 1000 lines

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#709274#9542. Friendship is Magicucup-team087AC ✓455ms19440kbC++2339.2kb2024-11-04 13:36:172024-11-04 13:36:19

answer

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "library/mod/modint_common.hpp"

struct has_mod_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (len(dat) <= n) {
    int k = len(dat);
    int q = (mod + k - 1) / k;
    dat.eb(dat[k * q - mod] * mint::raw(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  assert(0 <= n && n < mod);
  static vector<mint> dat = {1, 1};
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static vector<mint> dat = {1, 1};
  if (n < 0) return mint(0);
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  static vvc<mint> C;
  static int H = 0, W = 0;
  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };
  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if constexpr (dense) return C_dense<mint>(n, k);
  if constexpr (!large) return multinomial<mint>(n, k, n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) x *= mint(n - i);
  return x * fact_inv<mint>(k);
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "library/mod/modint.hpp"

template <int mod>
struct modint {
  static constexpr u32 umod = u32(mod);
  static_assert(umod < u32(1) << 31);
  u32 val;

  static modint raw(u32 v) {
    modint x;
    x.val = v;
    return x;
  }
  constexpr modint() : val(0) {}
  constexpr modint(u32 x) : val(x % umod) {}
  constexpr modint(u64 x) : val(x % umod) {}
  constexpr modint(u128 x) : val(x % umod) {}
  constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
  bool operator<(const modint &other) const { return val < other.val; }
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += umod - p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = u64(val) * p.val % umod;
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(ll n) const {
    assert(n >= 0);
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  static constexpr int get_mod() { return mod; }
  // (n, r), r は 1 の 2^n 乗根
  static constexpr pair<int, int> ntt_info() {
    if (mod == 120586241) return {20, 74066978};
    if (mod == 167772161) return {25, 17};
    if (mod == 469762049) return {26, 30};
    if (mod == 754974721) return {24, 362};
    if (mod == 880803841) return {23, 211};
    if (mod == 943718401) return {22, 663003469};
    if (mod == 998244353) return {23, 31};
    if (mod == 1004535809) return {21, 582313106};
    if (mod == 1012924417) return {21, 368093570};
    return {-1, -1};
  }
  static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};

#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
  fastio::rd(x.val);
  x.val %= mod;
  // assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
  fastio::wt(x.val);
}
#endif

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "library/geo/convex_hull.hpp"

#line 2 "library/geo/base.hpp"
template <typename T>
struct Point {
  T x, y;

  Point() : x(0), y(0) {}

  template <typename A, typename B>
  Point(A x, B y) : x(x), y(y) {}

  template <typename A, typename B>
  Point(pair<A, B> p) : x(p.fi), y(p.se) {}

  Point operator+=(const Point p) {
    x += p.x, y += p.y;
    return *this;
  }
  Point operator-=(const Point p) {
    x -= p.x, y -= p.y;
    return *this;
  }
  Point operator+(Point p) const { return {x + p.x, y + p.y}; }
  Point operator-(Point p) const { return {x - p.x, y - p.y}; }
  bool operator==(Point p) const { return x == p.x && y == p.y; }
  bool operator!=(Point p) const { return x != p.x || y != p.y; }
  Point operator-() const { return {-x, -y}; }
  Point operator*(T t) const { return {x * t, y * t}; }
  Point operator/(T t) const { return {x / t, y / t}; }

  bool operator<(Point p) const {
    if (x != p.x) return x < p.x;
    return y < p.y;
  }
  T dot(const Point& other) const { return x * other.x + y * other.y; }
  T det(const Point& other) const { return x * other.y - y * other.x; }

  double norm() { return sqrtl(x * x + y * y); }
  double angle() { return atan2(y, x); }

  Point rotate(double theta) {
    static_assert(!is_integral<T>::value);
    double c = cos(theta), s = sin(theta);
    return Point{c * x - s * y, s * x + c * y};
  }
  Point rot90(bool ccw) { return (ccw ? Point{-y, x} : Point{y, -x}); }
};

#ifdef FASTIO
template <typename T>
void rd(Point<T>& p) {
  fastio::rd(p.x), fastio::rd(p.y);
}
template <typename T>
void wt(Point<T>& p) {
  fastio::wt(p.x);
  fastio::wt(' ');
  fastio::wt(p.y);
}
#endif

// A -> B -> C と進むときに、左に曲がるならば +1、右に曲がるならば -1
template <typename T>
int ccw(Point<T> A, Point<T> B, Point<T> C) {
  T x = (B - A).det(C - A);
  if (x > 0) return 1;
  if (x < 0) return -1;
  return 0;
}

template <typename REAL, typename T, typename U>
REAL dist(Point<T> A, Point<U> B) {
  REAL dx = REAL(A.x) - REAL(B.x);
  REAL dy = REAL(A.y) - REAL(B.y);
  return sqrt(dx * dx + dy * dy);
}

// ax+by+c
template <typename T>
struct Line {
  T a, b, c;

  Line(T a, T b, T c) : a(a), b(b), c(c) {}
  Line(Point<T> A, Point<T> B) { a = A.y - B.y, b = B.x - A.x, c = A.x * B.y - A.y * B.x; }
  Line(T x1, T y1, T x2, T y2) : Line(Point<T>(x1, y1), Point<T>(x2, y2)) {}

  template <typename U>
  U eval(Point<U> P) {
    return a * P.x + b * P.y + c;
  }

  template <typename U>
  T eval(U x, U y) {
    return a * x + b * y + c;
  }

  // 同じ直線が同じ a,b,c で表現されるようにする
  void normalize() {
    static_assert(is_same_v<T, int> || is_same_v<T, long long>);
    T g = gcd(gcd(abs(a), abs(b)), abs(c));
    a /= g, b /= g, c /= g;
    if (b < 0) { a = -a, b = -b, c = -c; }
    if (b == 0 && a < 0) { a = -a, b = -b, c = -c; }
  }

  bool is_parallel(Line other) { return a * other.b - b * other.a == 0; }
  bool is_orthogonal(Line other) { return a * other.a + b * other.b == 0; }
};

template <typename T>
struct Segment {
  Point<T> A, B;

  Segment(Point<T> A, Point<T> B) : A(A), B(B) {}
  Segment(T x1, T y1, T x2, T y2) : Segment(Point<T>(x1, y1), Point<T>(x2, y2)) {}

  bool contain(Point<T> C) {
    T det = (C - A).det(B - A);
    if (det != 0) return 0;
    return (C - A).dot(B - A) >= 0 && (C - B).dot(A - B) >= 0;
  }

  Line<T> to_Line() { return Line(A, B); }
};

template <typename REAL>
struct Circle {
  Point<REAL> O;
  REAL r;
  Circle(Point<REAL> O, REAL r) : O(O), r(r) {}
  Circle(REAL x, REAL y, REAL r) : O(x, y), r(r) {}
  template <typename T>
  bool contain(Point<T> p) {
    REAL dx = p.x - O.x, dy = p.y - O.y;
    return dx * dx + dy * dy <= r * r;
  }
};
#line 4 "library/geo/convex_hull.hpp"

// allow_180=true で同一座標点があるとこわれる
// full なら I[0] が sorted で min になる
template <typename T, bool allow_180 = false>
vector<int> ConvexHull(vector<Point<T>>& XY, string mode = "full", bool sorted = false) {
  assert(mode == "full" || mode == "lower" || mode == "upper");
  ll N = XY.size();
  if (N == 1) return {0};
  if (N == 2) {
    if (XY[0] < XY[1]) return {0, 1};
    if (XY[1] < XY[0]) return {1, 0};
    return {0};
  }
  vc<int> I(N);
  if (sorted) {
    FOR(i, N) I[i] = i;
  } else {
    I = argsort(XY);
  }
  if constexpr (allow_180) { FOR(i, N - 1) assert(XY[i] != XY[i + 1]); }

  auto check = [&](ll i, ll j, ll k) -> bool {
    T det = (XY[j] - XY[i]).det(XY[k] - XY[i]);
    if constexpr (allow_180) return det >= 0;
    return det > T(0);
  };

  auto calc = [&]() {
    vector<int> P;
    for (auto&& k: I) {
      while (P.size() > 1) {
        auto i = P[P.size() - 2];
        auto j = P[P.size() - 1];
        if (check(i, j, k)) break;
        P.pop_back();
      }
      P.eb(k);
    }
    return P;
  };

  vc<int> P;
  if (mode == "full" || mode == "lower") {
    vc<int> Q = calc();
    P.insert(P.end(), all(Q));
  }
  if (mode == "full" || mode == "upper") {
    if (!P.empty()) P.pop_back();
    reverse(all(I));
    vc<int> Q = calc();
    P.insert(P.end(), all(Q));
  }
  if (mode == "upper") reverse(all(P));
  while (len(P) >= 2 && XY[P[0]] == XY[P.back()]) P.pop_back();
  return P;
}
#line 2 "library/convex/line_min_function.hpp"

// 1 次関数の max を [L,R,a,b] の列として出力
// https://qoj.ac/contest/1576/problem/8505
template <typename Re, typename T>
vc<tuple<Re, Re, Re, Re>> line_min_function_real(vc<pair<T, T>> LINE) {
  assert(!LINE.empty());
  using P = Point<T>;
  vc<P> point;
  for (auto& [x, y]: LINE) point.eb(P(x, y));
  auto I = ConvexHull(point, "lower");
  point = rearrange(point, I);
  int N = len(point);
  if (N >= 2 && point[N - 1].x == point[N - 2].x) { POP(point), --N; }
  reverse(all(point)); // 傾きは大きい方から
  Re l = -infty<Re>;
  vc<tuple<Re, Re, Re, Re>> ANS;
  FOR(i, N) {
    Re r = infty<Re>;
    auto [a, b] = point[i];
    if (i + 1 < N) {
      auto [c, d] = point[i + 1];
      if (a == c) continue;
      assert(a > c);
      r = Re(d - b) / (a - c);
      chmax(r, l), chmin(r, infty<Re>);
    }
    if (l < r) ANS.eb(l, r, a, b), l = r;
  }
  return ANS;
}

// 1 次関数の max を [L,R,a,b] の列として出力
template <typename Re, typename T>
vc<tuple<Re, Re, Re, Re>> line_max_function_real(vc<pair<T, T>> LINE) {
  assert(!LINE.empty());
  for (auto& [a, b]: LINE) a = -a, b = -b;
  auto ANS = line_min_function_real<Re, T>(LINE);
  for (auto& [l, r, a, b]: ANS) a = -a, b = -b;
  return ANS;
}

// LINE(a,b,c): y=(ax+b)/c, 評価点は整数
// 1 次関数の min を [L,R,a,b,c] の列として出力
// c>0, (ax+b)c がオーバーフローしない,
template <typename T>
vc<tuple<T, T, T, T, T>> line_min_function_rational(vc<tuple<T, T, T>> LINE, T L, T R) {
  // 傾き降順
  sort(all(LINE), [&](auto& L, auto& R) -> bool {
    auto& [a1, b1, c1] = L;
    auto& [a2, b2, c2] = R;
    return a1 * c2 > a2 * c1;
  });
  vc<tuple<T, T, T, T, T>> ANS;
  for (auto& [a2, b2, c2]: LINE) {
    while (1) {
      if (ANS.empty()) {
        ANS.eb(L, R, a2, b2, c2);
        break;
      }
      auto& [L1, R1, a1, b1, c1] = ANS.back();
      if ((a1 * L1 + b1) * c2 > (a2 * L1 + b2) * c1) {
        ANS.pop_back();
        if (len(ANS)) get<1>(ANS.back()) = R;
        continue;
      }
      T s = c2 * a1 - a2 * c1;
      if (s == 0) break;
      assert(s > 0);
      T t = b2 * c1 - b1 * c2;
      T x = t / s;
      assert(L1 <= x);
      if (x >= R1 - 1) break;
      R1 = x + 1;
      ANS.eb(x + 1, R, a2, b2, c2);
    }
  }
  return ANS;
}

// LINE(a,b,c): y=(ax+b)/c, 評価点は整数
// 1 次関数の min を [L,R,a,b,c] の列として出力
// c>0, (ax+b)c がオーバーフローしない,
template <typename T>
vc<tuple<T, T, T, T, T>> line_max_function_rational(vc<tuple<T, T, T>> LINE, T L, T R) {
  for (auto& [a, b, c]: LINE) a = -a, b = -b;
  auto ANS = line_min_function_rational<T>(LINE, L, R);
  for (auto& [L, R, a, b, c]: ANS) a = -a, b = -b;
  return ANS;
}

// LINE(a,b): y=ax+b, 評価点は整数
// 1 次関数の min を [L,R,a,b] の列として出力
// ax+b がオーバーフローしない,
template <typename T>
vc<tuple<T, T, T, T>> line_min_function_integer(vc<pair<T, T>> LINE, T L, T R) {
  // 傾き降順
  sort(all(LINE), [&](auto& L, auto& R) -> bool {
    auto& [a1, b1] = L;
    auto& [a2, b2] = R;
    return a1 > a2;
  });
  vc<tuple<T, T, T, T>> ANS;
  for (auto& [a2, b2]: LINE) {
    while (1) {
      if (ANS.empty()) {
        ANS.eb(L, R, a2, b2);
        break;
      }
      auto& [L1, R1, a1, b1] = ANS.back();
      if ((a1 * L1 + b1) > (a2 * L1 + b2)) {
        ANS.pop_back();
        if (len(ANS)) get<1>(ANS.back()) = R;
        continue;
      }
      T s = a1 - a2;
      if (s == 0) break;
      assert(s > 0);
      T t = b2 - b1;
      T x = t / s;
      assert(L1 <= x);
      if (x >= R1 - 1) break;
      R1 = x + 1;
      ANS.eb(x + 1, R, a2, b2);
    }
  }
  return ANS;
}

// LINE(a,b,c): y=(ax+b)/c, 評価点は整数
// 1 次関数の min を [L,R,a,b,c] の列として出力
// c>0, (ax+b)c がオーバーフローしない,
template <typename T>
vc<tuple<T, T, T, T>> line_max_function_integer(vc<pair<T, T>> LINE, T L, T R) {
  for (auto& [a, b]: LINE) a = -a, b = -b;
  auto ANS = line_min_function_integer<T>(LINE, L, R);
  for (auto& [L, R, a, b]: ANS) a = -a, b = -b;
  return ANS;
}
#line 1 "library/mod/floor_sum_of_linear_polynomial.hpp"

#line 2 "library/alg/monoid_pow.hpp"

// chat gpt
template <typename U, typename Arg1, typename Arg2>
struct has_power_method {
private:
  // ヘルパー関数の実装
  template <typename V, typename A1, typename A2>
  static auto check(int)
      -> decltype(std::declval<V>().power(std::declval<A1>(),
                                          std::declval<A2>()),
                  std::true_type{});
  template <typename, typename, typename>
  static auto check(...) -> std::false_type;

public:
  // メソッドの有無を表す型
  static constexpr bool value = decltype(check<U, Arg1, Arg2>(0))::value;
};

template <typename Monoid>
typename Monoid::X monoid_pow(typename Monoid::X x, ll exp) {
  using X = typename Monoid::X;
  if constexpr (has_power_method<Monoid, X, ll>::value) {
    return Monoid::power(x, exp);
  } else {
    assert(exp >= 0);
    X res = Monoid::unit();
    while (exp) {
      if (exp & 1) res = Monoid::op(res, x);
      x = Monoid::op(x, x);
      exp >>= 1;
    }
    return res;
  }
}
#line 2 "library/mod/floor_monoid_product.hpp"

// https://yukicoder.me/submissions/883884
// https://qoj.ac/contest/1411/problem/7620
// U は範囲内で ax+b がオーバーフローしない程度
// yyy x yyyy x ... yyy x yyy (x を N 個)
// k 個目の x までに floor(ak+b,m) 個の y がある
// my<=ax+b における lattice path における辺の列と見なせる
template <typename Monoid, typename X, typename U>
X floor_monoid_product(X x, X y, U N, U a, U b, U m) {
  U c = (a * N + b) / m;
  X pre = Monoid::unit(), suf = Monoid::unit();
  while (1) {
    const U p = a / m, q = b / m;
    a %= m, b %= m;
    x = Monoid::op(x, monoid_pow<Monoid>(y, p));
    pre = Monoid::op(pre, monoid_pow<Monoid>(y, q));
    c -= (p * N + q);
    if (c == 0) break;
    const U d = (m * c - b - 1) / a + 1;
    suf = Monoid::op(y, Monoid::op(monoid_pow<Monoid>(x, N - d), suf));
    b = m - b - 1 + a, N = c - 1, c = d;
    swap(m, a), swap(x, y);
  }
  x = monoid_pow<Monoid>(x, N);
  return Monoid::op(Monoid::op(pre, x), suf);
}
#line 1 "library/alg/monoid/monoid_for_floor_sum.hpp"
// sum i^k1floor^k2: floor path で (x,y) から x 方向に進むときに x^k1y^k2 を足す
template <typename T, int K1, int K2>
struct Monoid_for_floor_sum {
  using ARR = array<array<T, K2 + 1>, K1 + 1>;
  struct Data {
    ARR dp;
    T dx, dy;
  };

  using value_type = Data;
  using X = value_type;
  static X op(X a, X b) {
    static constexpr int n = max(K1, K2);
    static T comb[n + 1][n + 1];
    if (comb[0][0] != T(1)) {
      comb[0][0] = T(1);
      FOR(i, n) FOR(j, i + 1) { comb[i + 1][j] += comb[i][j], comb[i + 1][j + 1] += comb[i][j]; }
    }

    array<T, K1 + 1> pow_x;
    array<T, K2 + 1> pow_y;
    pow_x[0] = 1, pow_y[0] = 1;
    FOR(i, K1) pow_x[i + 1] = pow_x[i] * a.dx;
    FOR(i, K2) pow_y[i + 1] = pow_y[i] * a.dy;

    // +dy
    FOR(i, K1 + 1) {
      FOR_R(j, K2 + 1) {
        T x = b.dp[i][j];
        FOR(k, j + 1, K2 + 1) b.dp[i][k] += comb[k][j] * pow_y[k - j] * x;
      }
    }
    // +dx
    FOR(j, K2 + 1) {
      FOR_R(i, K1 + 1) { FOR(k, i, K1 + 1) a.dp[k][j] += comb[k][i] * pow_x[k - i] * b.dp[i][j]; }
    }

    a.dx += b.dx, a.dy += b.dy;
    return a;
  }

  static X to_x() {
    X x = unit();
    x.dp[0][0] = 1, x.dx = 1;
    return x;
  }
  static X to_y() {
    X x = unit();
    x.dy = 1;
    return x;
  }
  static constexpr X unit() { return {ARR{}, T(0), T(0)}; }
  static constexpr bool commute = 0;
};
#line 4 "library/mod/floor_sum_of_linear_polynomial.hpp"

// 全部非負, T は答, U は ax+b がオーバーフローしない
template <typename T, int K1, int K2, typename U>
array<array<T, K2 + 1>, K1 + 1> floor_sum_of_linear_polynomial_nonnegative(U N, U a, U b, U mod) {
  static_assert(is_same_v<U, u64> || is_same_v<U, u128>);
  assert(a == 0 || N < (U(-1) - b) / a);
  using Mono = Monoid_for_floor_sum<T, K1, K2>;
  auto x = floor_monoid_product<Mono>(Mono::to_x(), Mono::to_y(), N, a, b, mod);
  return x.dp;
};

// sum_{L<=x<R} x^i floor(ax+b,mod)^j
// a+bx が I, U でオーバーフローしない
template <typename T, int K1, int K2, typename I>
array<array<T, K2 + 1>, K1 + 1> floor_sum_of_linear_polynomial(I L, I R, I a, I b, I mod) {
  static_assert(is_same_v<I, ll> || is_same_v<I, i128>);
  assert(L <= R && mod > 0);
  if (a < 0) {
    auto ANS = floor_sum_of_linear_polynomial<T, K1, K2, I>(-R + 1, -L + 1, -a, b, mod);
    FOR(i, K1 + 1) {
      if (i % 2 == 1) { FOR(j, K2 + 1) ANS[i][j] = -ANS[i][j]; }
    }
    return ANS;
  }
  assert(a >= 0);
  I ADD_X = L;
  I N = R - L;
  b += a * L;
  I ADD_Y = floor<I>(b, mod);
  b -= ADD_Y * mod;
  assert(a >= 0 && b >= 0);

  using Mono = Monoid_for_floor_sum<T, K1, K2>;
  using Data = typename Mono::Data;
  using U = std::conditional_t<is_same_v<I, ll>, i128, u128>;
  Data A = floor_monoid_product<Mono, Data, U>(Mono::to_x(), Mono::to_y(), N, a, b, mod);
  Data offset = Mono::unit();
  offset.dx = T(ADD_X), offset.dy = T(ADD_Y);
  A = Mono::op(offset, A);
  return A.dp;
};
#line 7 "main.cpp"

using mint = modint107;

ll f(ll n) {
  string S = to_string(n);
  ll ANS = n;
  FOR(k, len(S) + 1) {
    ll a = (k == 0 ? 0 : stoi(S.substr(0, k)));
    ll b = (k == len(S) ? 0 : stoi(S.substr(k)));
    chmin(ANS, abs(a - b));
  }
  return ANS;
}

ll ten[20];

// 右側の桁数 r
// L, 10^rM, R
// concat(L,M)>R
// L<=concat(M,R)

mint F2(ll r, ll M, ll L1, ll L2, ll R1, ll R2) {
  SHOW(r, M, L1, L2, R1, R2);
  using T6 = tuple<ll, ll, ll, ll, ll, ll>;
  static map<T6, mint> MP;
  T6 key = {r, M, L1, L2, R1, R2};
  if (MP.count(key)) return MP[key];
  assert(L1 <= L2 && R1 <= R2);
  if (L1 == L2 || R1 == R2) return 0;
  if (L1 >= M * ten[r] + R2) return 0;

  mint ANS = 0;

  // FOR(L, L1, L2) {
  //   FOR(R, R1, R2) {
  //     if (10 * L + M > R && L <= ten[r] * M + R) {
  //       ll a = 10 * L + M - R;
  //       ll b = ten[r] * M + R - L;
  //       ANS += min(a, b);
  //     }
  //   }
  // }
  // return ANS;

  using T3 = tuple<i128, i128, i128>;

  auto sub = [&](vc<T3> lower, vc<T3> upper, mint A, mint B, mint C) -> void {
    vc<tuple<i128, i128, i128, i128, i128>> LO = line_max_function_rational<i128>(lower, L1, L2);
    vc<tuple<i128, i128, i128, i128, i128>> HI = line_min_function_rational<i128>(upper, L1, L2);
    reverse(all(LO));
    reverse(all(HI));
    B *= inv<mint>(2);
    auto calc = [&](ll L, ll R, ll a, ll b, ll c) -> mint {
      mint ans = 0;
      if (R == L + 1) {
        ll x = L;
        ll y = floor<ll>(a * x + b, c);
        ans += A * x * (y + 1);
        ans += B * y * (y + 1);
        ans += C * (y + 1);
        return ans;
      }
      // FOR(x, L, R) {
      //   ll y = floor<ll>(a * x + b, c);
      //   ans += A * x * (y + 1);
      //   ans += B * inv<mint>(2) * y * (y + 1);
      //   ans += C * (y + 1);
      // }
      auto S = floor_sum_of_linear_polynomial<mint, 1, 2, i128>(L, R, a, b, c);
      ans += A * (S[1][0] + S[1][1]);
      ans += B * (S[0][1] + S[0][2]);
      ans += C * (S[0][0] + S[0][1]);
      return ans;
    };
    auto f = [&](ll L, ll R, ll a1, ll b1, ll c1, ll a2, ll b2, ll c2) -> void {
      if (L == R) return;
      ANS += calc(L, R, a2, b2 - 1, c2) - calc(L, R, a1, b1 - 1, c1);
      // FOR(x, L, R) {
      //   ll s = floor<ll>(a1 * x + b1 - 1, c1);
      //   ll t = floor<ll>(a2 * x + b2 - 1, c2);
      //   FOR(y, s + 1, t + 1) { ANS += A * x + B * y + C; }
      // }
    };
    auto g = [&](ll L, ll R, ll a1, ll b1, ll c1, ll a2, ll b2, ll c2) -> void {
      ll d = (a1 * c2 - a2 * c1);
      if (d == 0) {
        f(L, R, a1, b1, c1, a2, b2, c2);
      } else {
        ll x = floor<ll>(b2 * c1 - b1 * c2, a1 * c2 - a2 * c1);
        if (d > 0) {
          if (x < L) { return; }
          chmin(x, R - 1);
          f(L, x + 1, a1, b1, c1, a2, b2, c2);
        } else {
          if (R <= x) { return; }
          chmax(x, L - 1);
          f(x + 1, R, a1, b1, c1, a2, b2, c2);
        }
      }
    };
    while (len(LO) && len(HI)) {
      auto& [L1, R1, a1, b1, c1] = LO.back();
      auto& [L2, R2, a2, b2, c2] = HI.back();
      assert(L1 == L2);
      ll R = min(R1, R2);
      g(L1, R, a1, b1, c1, a2, b2, c2);
      L1 = R, L2 = R;
      if (L1 == R1) POP(LO);
      if (L2 == R2) POP(HI);
    }
  };

  {
    vc<T3> lower, upper;
    lower.eb(0, R1, 1);
    upper.eb(0, R2, 1);
    lower.eb(1, -ten[r] * M, 1);
    upper.eb(10, M, 1);
    // 10x+M-y<=ten[r]M+y-x
    lower.eb(11, M - ten[r] * M, 2);
    sub(lower, upper, 10, -1, M);
  }
  {
    vc<T3> lower, upper;
    lower.eb(0, R1, 1);
    upper.eb(0, R2, 1);
    lower.eb(1, -ten[r] * M, 1);
    upper.eb(10, M, 1);
    // 10x+M-y>ten[r]M+y-x
    upper.eb(11, M - ten[r] * M, 2);
    sub(lower, upper, -1, 1, ten[r] * M);
  }
  return MP[key] = ANS;
}

mint slowF(ll N) {
  mint ANS = 0;
  FOR(r, 19) {
    FOR(M, 10) {
      if (r == 18 && M >= 2) continue;
      if (r == 18 && M == 0) continue;
      ll ub = N - ten[r] * M;
      if (ub <= 0) continue;
      auto [s, t] = divmod<ll>(ub, ten[r + 1]);
      /*
      [10^{r+1}s,10^{r+1}s+t)
      [0,10^{r+1}s)
      */
      ANS += F2(r, M, s, s + 1, 0, min<ll>(t, ten[r]));
      ANS += F2(r, M, 0, s, 0, ten[r]);
    }
  }
  return ANS;
}

mint TEN_F[19];

mint F(ll N) {
  mint ANS = 0;
  while (N > ten[18]) {
    ANS += f(N - 1);
    --N;
  }
  ll n = len(to_string(N));
  ANS += TEN_F[n - 1];
  if (N == ten[n - 1]) TEN_F[n - 1];
  // [ten[n-1],N) の計算をする

  FOR(r, n) {
    FOR(M, 10) {
      if (r == 18 && M >= 2) continue;
      if (r == n - 1 && M == 0) continue;
      ll ub = N - ten[r] * M;
      if (ub <= 0) continue;
      auto [s, t] = divmod<ll>(ub, ten[r + 1]);
      /*
      [10^{r+1}s,10^{r+1}s+t)
      [0,10^{r+1}s)
      */
      // さらに最高位が 1 以上という条件をつける
      ll a = s, b = s + 1;
      if (r < n - 1) chmax(a, ten[n - 2 - r]);
      if (a < b) ANS += F2(r, M, a, b, 0, min<ll>(t, ten[r]));
      a = 0, b = s;
      if (r < n - 1) chmax(a, ten[n - 2 - r]);
      if (a < b) ANS += F2(r, M, a, b, 0, ten[r]);
    }
  }
  return ANS;
}

void solve() {
  LL(L, R);
  mint ANS = F(R + 1) - F(L);
  print(ANS);
}

void test() {
  mint god = 0;
  FOR(N, 1, 1000000) {
    mint ans = F(N);
    SHOW(N, god, ans);
    assert(ans == god);
    god += f(N);
  }
}

signed main() {
  ten[0] = 1;
  FOR(i, 19) ten[i + 1] = ten[i] * 10;
  FOR(K, 19) { TEN_F[K] = slowF(ten[K]); }
  // test();
  // return 0;
  INT(T);
  FOR(T) solve();
}