QOJ.ac
QOJ
ID | Submission ID | Problem | Hacker | Owner | Result | Submit time | Judge time |
---|---|---|---|---|---|---|---|
#1068 | #551010 | #9242. An Easy Geometry Problem | ucup-team5405 | ucup-team004 | Failed. | 2024-10-25 14:48:52 | 2024-10-25 14:48:52 |
Details
Extra Test:
Accepted
time: 0ms
memory: 3820kb
input:
6 6 6 2 1 5 9 10 15 18 2 2 1 3 3 -3 2 2 1 3 4 3 2 3 2 4
output:
1 0 2 0
result:
ok 4 number(s): "1 0 2 0"
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#551010 | #9242. An Easy Geometry Problem | ucup-team004# | AC ✓ | 721ms | 15884kb | C++20 | 6.2kb | 2024-09-07 15:04:09 | 2024-09-07 15:04:09 |
answer
#include <bits/stdc++.h>
using i64 = long long;
using u64 = unsigned long long;
using u32 = unsigned;
// TODO: Dynamic ModInt
template<typename T>
constexpr T power(T a, u64 b) {
T res {1ULL};
for (; b != 0; b /= 2, a *= a) {
if (b % 2 == 1) {
res *= a;
}
}
return res;
}
template<u32 P>
constexpr u32 mulMod(u32 a, u32 b) {
return 1ULL * a * b % P;
}
template<u64 P>
constexpr u64 mulMod(u64 a, u64 b) {
u64 res = a * b - u64(1.L * a * b / P - 0.5L) * P;
res %= P;
return res;
}
template<typename U, U P>
requires std::unsigned_integral<U>
struct ModIntBase {
public:
constexpr ModIntBase() : x {0} {}
template<typename T>
requires std::integral<T>
constexpr ModIntBase(T x_) : x {norm(x_ % T {P})} {}
constexpr static U norm(U x) {
if ((x >> (8 * sizeof(U) - 1) & 1) == 1) {
x += P;
}
if (x >= P) {
x -= P;
}
return x;
}
constexpr U val() const {
return x;
}
constexpr ModIntBase operator-() const {
ModIntBase res;
res.x = norm(P - x);
return res;
}
constexpr ModIntBase inv() const {
return power(*this, P - 2);
}
constexpr ModIntBase &operator*=(const ModIntBase &rhs) & {
x = mulMod<P>(x, rhs.val());
return *this;
}
constexpr ModIntBase &operator+=(const ModIntBase &rhs) & {
x = norm(x + rhs.x);
return *this;
}
constexpr ModIntBase &operator-=(const ModIntBase &rhs) & {
x = norm(x - rhs.x);
return *this;
}
constexpr ModIntBase &operator/=(const ModIntBase &rhs) & {
return *this *= rhs.inv();
}
friend constexpr ModIntBase operator*(ModIntBase lhs, const ModIntBase &rhs) {
lhs *= rhs;
return lhs;
}
friend constexpr ModIntBase operator+(ModIntBase lhs, const ModIntBase &rhs) {
lhs += rhs;
return lhs;
}
friend constexpr ModIntBase operator-(ModIntBase lhs, const ModIntBase &rhs) {
lhs -= rhs;
return lhs;
}
friend constexpr ModIntBase operator/(ModIntBase lhs, const ModIntBase &rhs) {
lhs /= rhs;
return lhs;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const ModIntBase &a) {
return os << a.val();
}
friend constexpr bool operator==(ModIntBase lhs, ModIntBase rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(ModIntBase lhs, ModIntBase rhs) {
return lhs.val() != rhs.val();
}
friend constexpr bool operator<(ModIntBase lhs, ModIntBase rhs) {
return lhs.val() < rhs.val();
}
private:
U x;
};
template<u32 P>
using ModInt = ModIntBase<u32, P>;
template<u64 P>
using ModInt64 = ModIntBase<u64, P>;
constexpr u64 P = u64(1E18) + 9;
using Z = ModInt64<P>;
constexpr u64 B = 1145141;
template <typename T>
struct Fenwick {
int n;
std::vector<T> a;
Fenwick(int n_ = 0) {
init(n_);
}
void init(int n_) {
n = n_;
a.assign(n, T{});
}
void add(int x, const T &v) {
for (int i = x + 1; i <= n; i += i & -i) {
a[i - 1] = a[i - 1] + v;
}
}
T sum(int x) {
T ans{};
for (int i = x; i > 0; i -= i & -i) {
ans = ans + a[i - 1];
}
return ans;
}
T rangeSum(int l, int r) {
return sum(r) - sum(l);
}
int select(const T &k) {
int x = 0;
T cur{};
for (int i = 1 << std::__lg(n); i; i /= 2) {
if (x + i <= n && cur + a[x + i - 1] <= k) {
x += i;
cur = cur + a[x - 1];
}
}
return x;
}
};
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int n, q;
i64 k, b;
std::cin >> n >> q >> k >> b;
std::vector<i64> A(n);
for (int i = 0; i < n; i++) {
std::cin >> A[i];
A[i] = 2 * A[i] - k * i;
}
b *= 2;
Fenwick<Z> f1(n);
Fenwick<Z> f2(n);
Fenwick<Z> f3(n);
std::vector<Z> pw(n + 1), pwinv(n + 1);
std::vector<Z> sp(n + 1), spi(n + 1);
pw[0] = 1ULL;
pwinv[0] = 1ULL;
Z inv = Z(B).inv();
for (int i = 1; i <= n; i++) {
pw[i] = pw[i - 1] * B;
pwinv[i] = pwinv[i - 1] * inv;
}
for (int i = 0; i < n; i++) {
sp[i + 1] = sp[i] + pw[i];
spi[i + 1] = spi[i] + pwinv[i];
}
for (int i = 0; i < n; i++) {
f1.add(i, A[i] * pw[i]);
f2.add(i, A[i] * pwinv[i]);
}
while (q--) {
int o;
std::cin >> o;
if (o == 1) {
int l, r;
i64 v;
std::cin >> l >> r >> v;
l--;
v *= 2;
f1.add(r, v * sp[r]);
f1.add(l, -v * sp[l]);
f2.add(r, v * spi[r]);
f2.add(l, -v * spi[l]);
f3.add(r, v);
f3.add(l, -v);
} else {
int i;
std::cin >> i;
i--;
int lo = 0, hi = std::min(i, n - 1 - i);
while (lo < hi) {
int r = (lo + hi + 1) / 2;
Z hl;
Z hr;
hl += f2.sum(i);
hl += f3.rangeSum(i, n) * spi[i];
hl -= f2.sum(i - r);
hl -= f3.rangeSum(i - r, n) * spi[i - r];
hl *= pw[i - 1];
hr += f1.sum(i + r + 1);
hr += f3.rangeSum(i + r + 1, n) * sp[i + r + 1];
hr -= f1.sum(i + 1);
hr -= f3.rangeSum(i + 1, n) * sp[i + 1];
hr *= pwinv[i + 1];
if (hl + b * sp[r] == hr) {
lo = r;
} else {
hi = r - 1;
}
}
std::cout << lo << "\n";
}
}
return 0;
}