QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#825594#9774. Same Sumucup-team133#AC ✓371ms35464kbC++2324.8kb2024-12-21 20:42:122024-12-23 10:03:50

Judging History

你现在查看的是测评时间为 2024-12-23 10:03:50 的历史记录

  • [2025-01-11 12:01:39]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:AC
  • 用时:341ms
  • 内存:35580kb
  • [2025-01-11 11:59:18]
  • hack成功,自动添加数据
  • (/hack/1443)
  • [2024-12-23 17:08:27]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:100
  • 用时:414ms
  • 内存:35476kb
  • [2024-12-23 17:02:06]
  • hack成功,自动添加数据
  • (/hack/1310)
  • [2024-12-23 16:56:47]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:100
  • 用时:413ms
  • 内存:35544kb
  • [2024-12-23 16:48:26]
  • hack成功,自动添加数据
  • (/hack/1309)
  • [2024-12-23 16:41:36]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:100
  • 用时:434ms
  • 内存:35648kb
  • [2024-12-23 16:33:45]
  • hack成功,自动添加数据
  • (/hack/1308)
  • [2024-12-23 16:28:22]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:100
  • 用时:387ms
  • 内存:35632kb
  • [2024-12-23 16:23:53]
  • hack成功,自动添加数据
  • (/hack/1307)
  • [2024-12-23 16:17:41]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:100
  • 用时:373ms
  • 内存:35396kb
  • [2024-12-23 16:13:08]
  • hack成功,自动添加数据
  • (/hack/1306)
  • [2024-12-23 16:00:43]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:100
  • 用时:360ms
  • 内存:35564kb
  • [2024-12-23 15:54:42]
  • hack成功,自动添加数据
  • (/hack/1305)
  • [2024-12-23 15:04:38]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:100
  • 用时:369ms
  • 内存:35456kb
  • [2024-12-23 14:58:39]
  • hack成功,自动添加数据
  • (/hack/1304)
  • [2024-12-23 10:03:50]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:100
  • 用时:371ms
  • 内存:35464kb
  • [2024-12-23 09:58:11]
  • hack成功,自动添加数据
  • (/hack/1302)
  • [2024-12-23 09:51:16]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:100
  • 用时:379ms
  • 内存:35372kb
  • [2024-12-23 09:47:22]
  • hack成功,自动添加数据
  • (/hack/1301)
  • [2024-12-23 09:45:05]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:100
  • 用时:382ms
  • 内存:35320kb
  • [2024-12-23 09:41:23]
  • hack成功,自动添加数据
  • (/hack/1300)
  • [2024-12-23 09:30:29]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:100
  • 用时:364ms
  • 内存:35556kb
  • [2024-12-23 09:26:32]
  • hack成功,自动添加数据
  • (/hack/1299)
  • [2024-12-23 09:23:58]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:100
  • 用时:357ms
  • 内存:35656kb
  • [2024-12-23 09:19:58]
  • hack成功,自动添加数据
  • (/hack/1298)
  • [2024-12-23 09:17:26]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:100
  • 用时:359ms
  • 内存:35612kb
  • [2024-12-23 09:13:29]
  • hack成功,自动添加数据
  • (/hack/1297)
  • [2024-12-22 19:03:10]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:100
  • 用时:395ms
  • 内存:35468kb
  • [2024-12-22 18:52:18]
  • hack成功,自动添加数据
  • (/hack/1296)
  • [2024-12-22 18:22:39]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:100
  • 用时:350ms
  • 内存:35568kb
  • [2024-12-22 18:13:14]
  • hack成功,自动添加数据
  • (/hack/1294)
  • [2024-12-21 20:42:12]
  • 评测
  • 测评结果:100
  • 用时:337ms
  • 内存:35676kb
  • [2024-12-21 20:42:12]
  • 提交

answer

#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif

template <class T> std::istream& operator>>(std::istream& is, std::vector<T>& v) {
    for (auto& e : v) {
        is >> e;
    }
    return is;
}

template <class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
    for (std::string_view sep = ""; const auto& e : v) {
        os << std::exchange(sep, " ") << e;
    }
    return os;
}

template <class T, class U = T> bool chmin(T& x, U&& y) {
    return y < x and (x = std::forward<U>(y), true);
}

template <class T, class U = T> bool chmax(T& x, U&& y) {
    return x < y and (x = std::forward<U>(y), true);
}

template <class T> void mkuni(std::vector<T>& v) {
    std::ranges::sort(v);
    auto result = std::ranges::unique(v);
    v.erase(result.begin(), result.end());
}

template <class T> int lwb(const std::vector<T>& v, const T& x) {
    return std::distance(v.begin(), std::ranges::lower_bound(v, x));
}

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
constexpr int bsf_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

template <class S,
          S (*op)(S, S),
          S (*e)(),
          class F,
          S (*mapping)(F, S),
          F (*composition)(F, F),
          F (*id)()>
struct lazy_segtree {
  public:
    lazy_segtree() : lazy_segtree(0) {}
    explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
    explicit lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        lz = std::vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }

        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    void apply(int p, F f) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }
    void apply(int l, int r, F f) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    template <bool (*g)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G> int max_right(int l, G g) {
        assert(0 <= l && l <= _n);
        assert(g(e()));
        if (l == _n) return _n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!g(op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (g(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*g)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G> int min_left(int r, G g) {
        assert(0 <= r && r <= _n);
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!g(op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (g(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;
    std::vector<F> lz;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
    void all_apply(int k, F f) {
        d[k] = mapping(f, d[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2 * k, lz[k]);
        all_apply(2 * k + 1, lz[k]);
        lz[k] = id();
    }
};

}  // namespace atcoder

#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

struct RandomNumberGenerator {
    std::mt19937 mt;

    RandomNumberGenerator() : mt(std::chrono::steady_clock::now().time_since_epoch().count()) {}

    uint32_t operator()(uint32_t a, uint32_t b) {
        std::uniform_int_distribution<uint32_t> dist(a, b - 1);
        return dist(mt);
    }

    uint32_t operator()(uint32_t b) { return (*this)(0, b); }

    template <typename T> void shuffle(std::vector<T>& v) {
        for (int i = 0; i < int(v.size()); i++) std::swap(v[i], v[(*this)(0, i + 1)]);
    }
};

struct RandomNumberGenerator64 {
    std::mt19937_64 mt;

    RandomNumberGenerator64() : mt(std::chrono::steady_clock::now().time_since_epoch().count()) {}

    uint64_t operator()(uint64_t a, uint64_t b) {
        std::uniform_int_distribution<uint64_t> dist(a, b - 1);
        return dist(mt);
    }

    uint64_t operator()(uint64_t b) { return (*this)(0, b); }

    template <typename T> void shuffle(std::vector<T>& v) {
        for (int i = 0; i < int(v.size()); i++) std::swap(v[i], v[(*this)(0, i + 1)]);
    }
};

using namespace std;

using ll = long long;

const int MAX = 3;
static constexpr array<int, MAX> MOD = {998244353, 1000000007};
using mint0 = atcoder::static_modint<MOD[0]>;
using mint1 = atcoder::static_modint<MOD[1]>;

mint0 x0, invx0;
mint1 x1, invx1;

struct S {
    ll cnt, sum;
    mint0 p0, q0;
    mint1 p1, q1;
};

struct T {
    ll add;
    mint0 P0, Q0;
    mint1 P1, Q1;
};

S op(S l, S r) { return S{l.cnt + r.cnt, l.sum + r.sum, l.p0 + r.p0, l.q0 + r.q0, l.p1 + r.p1, l.q1 + r.q1}; }

S e() { return S{0, 0, 0, 0, 0, 0}; }

S mapping(T l, S r) { return S{r.cnt, r.sum + l.add * r.cnt, r.p0 * l.P0, r.q0 * l.Q0, r.p1 * l.P1, r.q1 * l.Q1}; }

T composition(T l, T r) { return T{l.add + r.add, l.P0 * r.P0, l.Q0 * r.Q0, l.P1 * r.P1, l.Q1 * r.Q1}; }

T id() { return T{0, 1, 1, 1, 1}; }

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(15);

    int n, q;
    cin >> n >> q;
    vector<ll> a(n);
    cin >> a;

    RandomNumberGenerator rng;
    x0 = rng(2, MOD[0]);
    x1 = rng(2, MOD[1]);
    invx0 = x0.inv();
    invx1 = x1.inv();

    vector<S> init;
    for (int i = 0; i < n; i++) {
        init.push_back(S{1, a[i], x0.pow(a[i]), invx0.pow(a[i]), x1.pow(a[i]), invx1.pow(a[i])});
    }
    atcoder::lazy_segtree<S, op, e, T, mapping, composition, id> seg(init);

    auto query = [&](int L, int R) {
        auto prod = seg.prod(L, R);
        ll sum = prod.sum, cnt = (R - L) / 2;
        if (sum % cnt != 0) return false;
        sum /= cnt;
        if (prod.p0 != prod.q0 * x0.pow(sum)) return false;
        if (prod.p1 != prod.q1 * x1.pow(sum)) return false;
        return true;
    };

    for (; q--;) {
        int type;
        cin >> type;
        if (type == 1) {
            int L, R, v;
            cin >> L >> R >> v;
            seg.apply(--L, R, T{v, x0.pow(v), invx0.pow(v), x1.pow(v), invx1.pow(v)});
        } else {
            int L, R;
            cin >> L >> R;
            cout << (query(--L, R) ? "YES" : "NO") << "\n";
        }
    }
    return 0;
}

这程序好像有点Bug,我给组数据试试?

詳細信息

Test #1:

score: 100
Accepted
time: 1ms
memory: 3632kb

input:

8 4
1 2 3 4 5 6 7 8
2 1 8
1 1 4 4
2 1 6
2 1 8

output:

YES
NO
YES

result:

ok 3 token(s): yes count is 2, no count is 1

Test #2:

score: 0
Accepted
time: 289ms
memory: 35348kb

input:

200000 200000
0 0 0 1 1 0 2 1 1 2 0 1 0 0 0 2 1 0 1 2 2 1 2 1 2 0 0 2 1 2 1 0 0 2 0 2 1 1 1 2 0 0 0 0 2 0 1 0 0 2 2 1 1 0 0 2 1 0 2 0 2 1 2 1 0 1 2 1 0 1 2 1 2 1 0 1 2 0 1 0 1 1 0 2 1 2 0 2 2 1 1 2 1 2 2 0 0 1 2 0 0 2 2 0 1 2 2 0 0 1 2 1 2 0 2 0 0 2 0 2 1 0 1 1 1 1 2 1 2 0 1 2 1 0 2 1 0 1 1 2 2 0 1 ...

output:

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
...

result:

ok 100047 token(s): yes count is 22, no count is 100025

Test #3:

score: 0
Accepted
time: 286ms
memory: 33708kb

input:

200000 200000
5 5 2 0 1 1 4 1 1 0 4 2 2 5 5 4 1 2 2 0 3 3 3 2 5 4 1 5 1 0 0 4 3 4 2 2 3 1 4 2 0 5 4 0 2 5 5 5 2 2 3 4 0 2 2 5 0 2 3 5 4 0 0 2 1 0 5 3 1 4 5 2 2 3 4 5 0 5 5 5 3 3 0 1 4 3 0 0 3 2 2 0 4 5 5 5 2 4 5 2 5 3 1 1 5 2 1 0 1 0 5 0 0 1 5 1 5 3 1 5 3 5 4 0 2 2 4 2 5 2 3 4 5 4 3 5 2 5 2 4 5 3 4 ...

output:

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
...

result:

ok 99734 token(s): yes count is 10, no count is 99724

Test #4:

score: 0
Accepted
time: 371ms
memory: 35352kb

input:

200000 200000
185447 70128 80288 38126 188018 126450 46081 189881 15377 21028 12588 100061 7218 74518 162803 34448 90998 44793 167718 16370 136024 153269 186316 137564 3082 169700 175712 19214 82647 72919 170919 142138 57755 168197 81575 126456 183138 106882 167154 184388 198667 190302 188371 183732...

output:

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
...

result:

ok 99837 token(s): yes count is 11, no count is 99826

Test #5:

score: 0
Accepted
time: 292ms
memory: 34520kb

input:

200000 200000
0 2 0 2 0 2 1 1 1 1 0 2 2 0 1 1 1 1 2 0 0 2 1 1 0 2 0 2 0 2 2 0 1 1 0 2 1 1 2 0 2 0 1 1 2 0 1 1 2 0 0 2 0 2 2 0 1 1 2 0 1 1 0 2 0 2 2 0 0 2 2 0 1 1 1 1 1 1 2 0 0 2 0 2 0 2 0 2 2 0 0 2 1 1 0 2 0 2 2 0 2 0 1 1 1 1 0 2 0 2 2 0 1 1 0 2 2 0 0 2 2 0 1 1 2 0 1 1 0 2 1 1 2 0 1 1 0 2 1 1 2 0 1 ...

output:

NO
YES
YES
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
...

result:

ok 99868 token(s): yes count is 34, no count is 99834

Test #6:

score: 0
Accepted
time: 283ms
memory: 33940kb

input:

200000 200000
5 0 5 0 2 3 0 5 1 4 1 4 4 1 1 4 1 4 0 5 4 1 2 3 2 3 5 0 5 0 4 1 1 4 2 3 2 3 0 5 3 2 3 2 3 2 2 3 5 0 4 1 1 4 5 0 1 4 0 5 0 5 4 1 3 2 4 1 2 3 2 3 3 2 1 4 4 1 2 3 0 5 5 0 4 1 0 5 2 3 5 0 5 0 5 0 2 3 2 3 3 2 4 1 0 5 2 3 2 3 5 0 0 5 2 3 3 2 5 0 4 1 0 5 0 5 2 3 1 4 0 5 5 0 3 2 1 4 4 1 5 0 2 ...

output:

NO
YES
YES
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO...

result:

ok 99999 token(s): yes count is 32, no count is 99967

Test #7:

score: 0
Accepted
time: 365ms
memory: 33736kb

input:

200000 200000
185447 14553 70128 129872 80288 119712 38126 161874 188018 11982 126450 73550 46081 153919 189881 10119 15377 184623 21028 178972 12588 187412 100061 99939 7218 192782 74518 125482 162803 37197 34448 165552 90998 109002 44793 155207 167718 32282 16370 183630 136024 63976 153269 46731 1...

output:

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
...

result:

ok 99951 token(s): yes count is 16, no count is 99935

Test #8:

score: 0
Accepted
time: 332ms
memory: 34940kb

input:

200000 200000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98...

output:

NO
YES
YES
NO
NO
NO
YES
YES
YES
NO
YES
YES
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO...

result:

ok 99715 token(s): yes count is 40, no count is 99675

Test #9:

score: 0
Accepted
time: 333ms
memory: 34852kb

input:

200000 200000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98...

output:

YES
NO
YES
NO
YES
YES
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
...

result:

ok 100013 token(s): yes count is 34, no count is 99979

Test #10:

score: 0
Accepted
time: 361ms
memory: 35464kb

input:

200000 200000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98...

output:

YES
YES
NO
YES
NO
YES
NO
NO
NO
NO
YES
NO
NO
NO
NO
YES
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
...

result:

ok 99963 token(s): yes count is 34, no count is 99929

Test #11:

score: 0
Accepted
time: 22ms
memory: 3832kb

input:

6 122861
0 0 0 0 0 0
2 1 6
1 1 1 1
2 1 6
1 1 1 1
2 1 6
1 1 1 1
2 1 6
1 1 1 1
2 1 6
1 1 1 1
2 1 6
1 2 2 6
1 3 3 5
1 4 4 5
1 5 5 5
1 6 6 5
2 1 6
1 1 1 1
2 1 6
1 1 1 1
2 1 6
1 1 1 1
2 1 6
1 1 1 1
2 1 6
1 1 1 1
2 1 6
1 2 2 6
1 3 3 5
1 4 4 5
1 5 5 5
1 6 6 5
2 1 6
1 1 1 1
2 1 6
1 1 1 1
2 1 6
1 1 1 1
2 1 6...

output:

YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
...

result:

ok 46656 token(s): yes count is 4986, no count is 41670

Test #12:

score: 0
Accepted
time: 331ms
memory: 34092kb

input:

200000 200000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98...

output:

YES
YES
NO
YES
NO
YES
YES
YES
YES
YES
YES
NO
YES
YES
NO
YES
NO
YES
YES
NO
NO
YES
YES
YES
YES
NO
NO
YES
YES
NO
YES
NO
YES
YES
YES
YES
YES
YES
YES
NO
NO
NO
YES
YES
YES
YES
YES
NO
YES
YES
NO
YES
NO
YES
YES
YES
YES
NO
YES
NO
NO
YES
NO
NO
YES
YES
YES
NO
YES
YES
YES
YES
YES
NO
YES
YES
YES
NO
NO
NO
NO
NO
Y...

result:

ok 200000 token(s): yes count is 142548, no count is 57452

Test #13:

score: 0
Accepted
time: 312ms
memory: 35252kb

input:

200000 200000
192638 7362 141854 58146 18695 181305 143615 56385 20728 179272 179861 20139 78463 121537 79967 120033 121724 78276 131821 68179 140320 59680 124938 75062 119503 80497 14769 185231 50662 149338 82361 117639 43840 156160 110453 89547 64825 135175 177198 22802 147890 52110 197055 2945 12...

output:

NO
NO
NO
NO
YES
YES
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
YES
YES
NO
NO
NO
NO
YES
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
YES
YES
YES
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
YES
YES
NO
NO
NO
NO
NO
NO
YES
YES
NO
NO
YES
YES
NO
NO
NO
NO
YES
NO
YES...

result:

ok 200000 token(s): yes count is 48250, no count is 151750

Test #14:

score: 0
Accepted
time: 219ms
memory: 34612kb

input:

200000 200000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98...

output:

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
...

result:

ok 99626 token(s): yes count is 99626, no count is 0

Test #15:

score: 0
Accepted
time: 195ms
memory: 34544kb

input:

197608 196219
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

output:

NO

result:

ok NO

Test #16:

score: 0
Accepted
time: 197ms
memory: 34600kb

input:

200000 200000
192638 141854 18695 143615 20728 179861 78463 79967 121724 131821 140320 124938 119503 14769 50662 82361 43840 110453 64825 177198 147890 197055 123986 43758 8280 150034 76471 159453 87872 155736 157666 86004 64006 177643 1216 5985 55593 136832 69653 148283 122874 29168 48188 163871 13...

output:

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
...

result:

ok 100000 token(s): yes count is 0, no count is 100000

Test #17:

score: 0
Accepted
time: 71ms
memory: 3632kb

input:

4 200000
0 0 0 0
1 1 1 42088
2 1 4
1 1 1 58300
2 1 4
1 1 1 145704
2 1 4
1 1 1 117780
2 1 4
1 1 1 195088
2 1 4
1 1 1 160324
2 1 4
1 1 1 133788
2 1 4
1 1 1 162516
2 1 4
1 1 1 13988
2 1 4
1 1 1 188808
2 1 4
1 1 1 31100
2 1 4
1 1 1 177300
2 1 4
1 1 1 55928
2 1 4
1 1 1 19136
2 1 4
1 1 1 73668
2 1 4
1 1 1...

output:

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
...

result:

ok 100000 token(s): yes count is 0, no count is 100000

Test #18:

score: 0
Accepted
time: 0ms
memory: 3560kb

input:

2 1
0 0
2 1 2

output:

YES

result:

ok YES

Test #19:

score: 0
Accepted
time: 0ms
memory: 3616kb

input:

2 2
0 0
1 1 1 0
2 1 2

output:

YES

result:

ok YES

Test #20:

score: 0
Accepted
time: 0ms
memory: 3820kb

input:

1 1
0
1 1 1 0

output:


result:

ok Empty output

Test #21:

score: 0
Accepted
time: 63ms
memory: 3624kb

input:

4 200000
0 0 0 0
1 2 2 199964
2 1 4
1 1 1 199836
2 1 4
1 1 1 199940
2 1 4
1 2 2 199840
2 1 4
1 1 1 199828
2 1 4
1 2 2 199888
2 1 4
1 1 1 199648
2 1 4
1 2 2 199612
2 1 4
1 1 1 199708
2 1 4
1 2 2 199664
2 1 4
1 1 1 199832
2 1 4
1 2 2 199764
2 1 4
1 2 2 199976
2 1 4
1 1 1 199908
2 1 4
1 1 1 199856
2 1 ...

output:

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
...

result:

ok 100000 token(s): yes count is 8, no count is 99992

Test #22:

score: 0
Accepted
time: 270ms
memory: 34732kb

input:

200000 200000
200000 199999 199998 199997 199996 199995 199994 199993 199992 199991 199990 199989 199988 199987 199986 199985 199984 199983 199982 199981 199980 199979 199978 199977 199976 199975 199974 199973 199972 199971 199970 199969 199968 199967 199966 199965 199964 199963 199962 199961 199960...

output:

YES

result:

ok YES

Test #23:

score: 0
Accepted
time: 315ms
memory: 33848kb

input:

200000 200000
175960 196691 141034 183984 132008 129164 72964 53485 150696 31544 139600 193356 28529 89919 66203 72599 141290 173131 195071 149428 42387 2727 96203 56482 124989 42578 1279 45714 127772 147686 190834 124128 87157 141600 151702 131564 181105 179659 94356 91225 180372 167118 123153 1339...

output:

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
...

result:

ok 20000 token(s): yes count is 20000, no count is 0

Extra Test:

score: 0
Extra Test Passed