QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#808865 | #6137. Sub-cycle Graph | Kevin5307 | AC ✓ | 122ms | 19292kb | C++23 | 1.5kb | 2024-12-11 09:00:10 | 2024-12-11 09:00:11 |
Judging History
answer
//Author: Kevin
#include<bits/stdc++.h>
//#pragma GCC optimize("O2")
using namespace std;
#define ll long long
#define ull unsigned ll
#define pb emplace_back
#define mp make_pair
#define ALL(x) (x).begin(),(x).end()
#define rALL(x) (x).rbegin(),(x).rend()
#define srt(x) sort(ALL(x))
#define rev(x) reverse(ALL(x))
#define rsrt(x) sort(rALL(x))
#define sz(x) (int)(x.size())
#define inf 0x3f3f3f3f
#define pii pair<int,int>
#define lb(v,x) (int)(lower_bound(ALL(v),x)-v.begin())
#define ub(v,x) (int)(upper_bound(ALL(v),x)-v.begin())
#define uni(v) v.resize(unique(ALL(v))-v.begin())
#define longer __int128_t
void die(string S){puts(S.c_str());exit(0);}
const ll mod=1e9+7;
const ll inv2=(mod+1)/2;
ll fact[1001000],rfact[1001000];
ll C(int n,int k)
{
if(n==k) return 1;
if(k<0||k>n) return 0;
return fact[n]*rfact[k]%mod*rfact[n-k]%mod;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
fact[0]=rfact[1]=rfact[0]=1;
for(int i=1;i<1001000;i++)
fact[i]=fact[i-1]*i%mod;
for(int i=2;i<1001000;i++)
rfact[i]=(mod-mod/i)*rfact[mod%i]%mod;
for(int i=2;i<1001000;i++)
rfact[i]=rfact[i-1]*rfact[i]%mod;
int t;
cin>>t;
while(t--)
{
int n;
ll k;
cin>>n>>k;
if(k>n)
cout<<"0\n";
else if(k==n)
cout<<fact[n-1]*inv2%mod<<'\n';
else
{
int c=n-k;
ll ans=0;
ll val=1;
for(int i=0;i<=c;i++,val=val*inv2%mod)
if(c+i<=n)
ans=(ans+C(c,i)*val%mod*C(n-c-1,i-1))%mod;
ans=ans*fact[n]%mod*rfact[c]%mod;
cout<<ans<<'\n';
}
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 11ms
memory: 19272kb
input:
3 4 2 4 3 5 3
output:
15 12 90
result:
ok 3 number(s): "15 12 90"
Test #2:
score: 0
Accepted
time: 122ms
memory: 19292kb
input:
17446 3 0 3 1 3 2 3 3 4 0 4 1 4 2 4 3 4 4 5 0 5 1 5 2 5 3 5 4 5 5 6 0 6 1 6 2 6 3 6 4 6 5 6 6 7 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 11 0 11 1 11 2 11 3 11 4 11 5 11 6 11 7 11...
output:
1 3 3 1 1 6 15 12 3 1 10 45 90 60 12 1 15 105 375 630 360 60 1 21 210 1155 3465 5040 2520 360 1 28 378 2940 13545 35280 45360 20160 2520 1 36 630 6552 42525 170100 393120 453600 181440 20160 1 45 990 13230 114345 643545 2286900 4762800 4989600 1814400 181440 1 55 1485 24750 273735 2047815 10239075 3...
result:
ok 17446 numbers