QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#76804#5507. InvestorsmaspyAC ✓190ms144000kbC++2023.1kb2023-02-12 11:06:422023-02-12 11:06:45

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-02-12 11:06:45]
  • 评测
  • 测评结果:AC
  • 用时:190ms
  • 内存:144000kb
  • [2023-02-12 11:06:42]
  • 提交

answer

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  assert(!que.empty());
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  assert(!que.empty());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng) {
  assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.write(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};

struct has_read_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.read(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <typename T,
            typename enable_if<has_read<T>::value>::type * = nullptr>
  inline bool read_single(T &x) {
    x.read();
    return true;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <size_t N = 0, typename T>
  void read_single_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
      auto &x = std::get<N>(t);
      read_single(x);
      read_single_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool read_single(tuple<T...> &tpl) {
    read_single_tuple(tpl);
    return true;
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <typename T,
            typename enable_if<has_write<T>::value>::type * = nullptr>
  inline void write(T x) {
    x.write();
  }
  template <class T>
  void write(const vector<T> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <size_t N = 0, typename T>
  void write_tuple(const T t) {
    if constexpr (N < std::tuple_size<T>::value) {
      if constexpr (N > 0) { write(' '); }
      const auto x = std::get<N>(t);
      write(x);
      write_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool write(tuple<T...> tpl) {
    write_tuple(tpl);
    return true;
  }
  template <class T, size_t S>
  void write(const array<T, S> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if (val < 0) {
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if (negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/alg/monoid/add.hpp"

template <typename X>
struct Monoid_Add {
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
  static constexpr X inverse(const X &x) noexcept { return -x; }
  static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
  static constexpr X unit() { return X(0); }
  static constexpr bool commute = true;
};
#line 3 "library/ds/fenwicktree/fenwicktree.hpp"

template <typename Monoid>
struct FenwickTree {
  using G = Monoid;
  using E = typename G::value_type;
  int n;
  vector<E> dat;
  E total;

  FenwickTree() {}
  FenwickTree(int n) { build(n); }
  template <typename F>
  FenwickTree(int n, F f) {
    build(n, f);
  }
  FenwickTree(const vc<E>& v) { build(v); }

  void build(int m) {
    n = m;
    dat.assign(m, G::unit());
    total = G::unit();
  }
  void build(const vc<E>& v) {
    build(len(v), [&](int i) -> E { return v[i]; });
  }
  template <typename F>
  void build(int m, F f) {
    n = m;
    dat.clear();
    dat.reserve(n);
    total = G::unit();
    FOR(i, n) { dat.eb(f(i)); }
    for (int i = 1; i <= n; ++i) {
      int j = i + (i & -i);
      if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]);
    }
    total = prefix_sum(m);
  }

  E prod_all() { return total; }
  E sum_all() { return total; }
  E sum(int k) { return prefix_sum(k); }
  E prod(int k) { return prefix_prod(k); }
  E prefix_sum(int k) { return prefix_prod(k); }
  E prefix_prod(int k) {
    chmin(k, n);
    E ret = G::unit();
    for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]);
    return ret;
  }
  E sum(int L, int R) { return prod(L, R); }
  E prod(int L, int R) {
    chmax(L, 0), chmin(R, n);
    if (L == 0) return prefix_prod(R);
    assert(0 <= L && L <= R && R <= n);
    E pos = G::unit(), neg = G::unit();
    while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; }
    while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; }
    return G::op(pos, G::inverse(neg));
  }

  void add(int k, E x) { multiply(k, x); }
  void multiply(int k, E x) {
    static_assert(G::commute);
    total = G::op(total, x);
    for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x);
  }

  template <class F>
  int max_right(const F check) {
    assert(check(G::unit()));
    int i = 0;
    E s = G::unit();
    int k = 1;
    while (2 * k <= n) k *= 2;
    while (k) {
      if (i + k - 1 < len(dat)) {
        E t = G::op(s, dat[i + k - 1]);
        if (check(t)) { i += k, s = t; }
      }
      k >>= 1;
    }
    return i;
  }

  int kth(E k) {
    return max_right([&k](E x) -> bool { return x <= k; });
  }
};
#line 3 "library/seq/inversion.hpp"

template <typename T, bool SMALL>
ll inversion(vc<T> A) {
  if (A.empty()) return 0;
  if (!SMALL) {
    auto key = A;
    UNIQUE(key);
    for (auto&& x: A) x = LB(key, x);
  }
  ll ANS = 0;
  ll K = MAX(A) + 1;
  FenwickTree<Monoid_Add<int>> bit(K);
  for (auto&& x: A) {
    ANS += bit.sum(x + 1, K);
    bit.add(x, 1);
  }
  return ANS;
}

// i 番目:A_i が先頭になるように rotate したときの転倒数
template <typename T, bool SMALL>
vi inversion_rotate(vc<T>& A) {
  const int N = len(A);
  if (!SMALL) {
    auto key = A;
    UNIQUE(key);
    for (auto&& x: A) x = LB(key, x);
  }
  ll K = MAX(A) + 1;
  ll ANS = 0;
  FenwickTree<Monoid_Add<int>> bit(K);
  for (auto&& x: A) {
    ANS += bit.sum(x + 1, K);
    bit.add(x, 1);
  }
  vi res(N);
  FOR(i, N) {
    res[i] = ANS;
    ll x = A[i];
    ANS = ANS + bit.sum(x + 1, K) - bit.prefix_sum(x);
  }
  return res;
}

// inv[i][j] = inversion A[i:j) であるような (N+1, N+1) テーブル
template <typename T>
vvc<int> all_range_inversion(vc<T>& A) {
  int N = len(A);
  vv(int, dp, N + 1, N + 1);
  FOR_R(L, N + 1) FOR(R, L + 2, N + 1) {
    dp[L][R] = dp[L][R - 1] + dp[L + 1][R] - dp[L + 1][R - 1];
    if (A[L] > A[R - 1]) ++dp[L][R];
  }
  return dp;
}
#line 2 "library/convex/larsch.hpp"

// https://noshi91.github.io/Library/algorithm/larsch.cpp.html
template <class T>
class LARSCH {
  struct reduce_row;
  struct reduce_col;

  struct reduce_row {
    int n;
    std::function<T(int, int)> f;
    int cur_row;
    int state;
    std::unique_ptr<reduce_col> rec;

    reduce_row(int n_) : n(n_), f(), cur_row(0), state(0), rec() {
      const int m = n / 2;
      if (m != 0) { rec = std::make_unique<reduce_col>(m); }
    }

    void set_f(std::function<T(int, int)> f_) {
      f = f_;
      if (rec) {
        rec->set_f([&](int i, int j) -> T { return f(2 * i + 1, j); });
      }
    }

    int get_argmin() {
      const int cur_row_ = cur_row;
      cur_row += 1;
      if (cur_row_ % 2 == 0) {
        const int prev_argmin = state;
        const int next_argmin = [&]() {
          if (cur_row_ + 1 == n) {
            return n - 1;
          } else {
            return rec->get_argmin();
          }
        }();
        state = next_argmin;
        int ret = prev_argmin;
        for (int j = prev_argmin + 1; j <= next_argmin; j += 1) {
          if (f(cur_row_, ret) > f(cur_row_, j)) { ret = j; }
        }
        return ret;
      } else {
        if (f(cur_row_, state) <= f(cur_row_, cur_row_)) {
          return state;
        } else {
          return cur_row_;
        }
      }
    }
  };

  struct reduce_col {
    int n;
    std::function<T(int, int)> f;
    int cur_row;
    std::vector<int> cols;
    reduce_row rec;

    reduce_col(int n_) : n(n_), f(), cur_row(0), cols(), rec(n) {}

    void set_f(std::function<T(int, int)> f_) {
      f = f_;
      rec.set_f([&](int i, int j) -> T { return f(i, cols[j]); });
    }

    int get_argmin() {
      const int cur_row_ = cur_row;
      cur_row += 1;
      const auto cs = [&]() -> std::vector<int> {
        if (cur_row_ == 0) {
          return {{0}};
        } else {
          return {{2 * cur_row_ - 1, 2 * cur_row_}};
        }
      }();
      for (const int j: cs) {
        while ([&]() {
          const int size = cols.size();
          return size != cur_row_ && f(size - 1, cols.back()) > f(size - 1, j);
        }()) {
          cols.pop_back();
        }
        if (int(cols.size()) != n) { cols.push_back(j); }
      }
      return cols[rec.get_argmin()];
    }
  };

  std::unique_ptr<reduce_row> base;

public:
  LARSCH(int n, std::function<T(int, int)> f)
      : base(std::make_unique<reduce_row>(n)) {
    base->set_f(f);
  }

  int get_argmin() { return base->get_argmin(); }
};
#line 2 "library/convex/smawk.hpp"
// select(i,j,k) は (i,j) と (i,k) のうち選ぶ方(j or k)
template <typename F>
vc<int> SMAWK(int H, int W, F select) {
  auto dfs = [&](auto& dfs, vc<int> X, vc<int> Y) -> vc<int> {
    int N = len(X);
    if (N == 0) return {};
    vc<int> YY;
    for (auto&& y: Y) {
      while (len(YY)) {
        int py = YY.back(), x = X[len(YY) - 1];
        if (select(x, py, y) == py) break;
        YY.pop_back();
      }
      if (len(YY) < len(X)) YY.eb(y);
    }
    vc<int> XX;
    FOR(i, 1, len(X), 2) XX.eb(X[i]);
    vc<int> II = dfs(dfs, XX, YY);
    vc<int> I(N);
    FOR(i, len(II)) I[i + i + 1] = II[i];
    int p = 0;
    FOR(i, 0, N, 2) {
      int LIM = (i + 1 == N ? Y.back() : I[i + 1]);
      int best = Y[p];
      while (Y[p] < LIM) {
        ++p;
        best = select(X[i], best, Y[p]);
      }
      I[i] = best;
    }
    return I;
  };
  vc<int> X(H), Y(W);
  iota(all(X), 0), iota(all(Y), 0);
  return dfs(dfs, X, Y);
}
#line 3 "library/convex/monge.hpp"

// 定義域 [0, N] の範囲で f の monge 性を確認
template <typename T, typename F>
bool check_monge(int N, F f) {
  FOR(l, N + 1) FOR(k, l) FOR(j, k) FOR(i, j) {
    T lhs = f(i, l) + f(j, k);
    T rhs = f(i, k) + f(j, l);
    if (lhs < rhs) return false;
  }
  return true;
}

// newdp[j] = min (dp[i] + f(i,j))
template <typename T, typename F>
vc<T> monge_dp_update(int N, vc<T>& dp, F f) {
  assert(len(dp) == N + 1);
  auto select = [&](int i, int j, int k) -> int {
    if (i <= k) return j;
    return (dp[j] + f(j, i) > dp[k] + f(k, i) ? k : j);
  };
  vc<int> I = SMAWK(N + 1, N + 1, select);
  vc<T> newdp(N + 1, infty<T>);
  FOR(j, N + 1) {
    int i = I[j];
    chmin(newdp[j], dp[i] + f(i, j));
  }
  return newdp;
}

// 遷移回数を問わない場合
template <typename T, typename F>
vc<T> monge_shortest_path(int N, F f) {
  vc<T> dp(N + 1, infty<T>);
  dp[0] = 0;
  LARSCH<T> larsch(N, [&](int i, int j) -> T {
    ++i;
    if (i <= j) return infty<T>;
    return dp[j] + f(j, i);
  });
  FOR(r, 1, N + 1) {
    int l = larsch.get_argmin();
    dp[r] = dp[l] + f(l, r);
  }
  return dp;
}

// https://noshi91.github.io/algorithm-encyclopedia/d-edge-shortest-path-monge
// 上凸関数 calc_L(lambda) の最大値を求める問題に帰着
// |f| の上限 f_lim も渡す
template <typename T, typename F>
T monge_shortest_path_d_edge(int N, int d, T f_lim, F f) {
  assert(d <= N);
  auto calc_L = [&](T lambda) -> T {
    auto cost = [&](int frm, int to) -> T { return f(frm, to) + lambda; };
    vc<T> dp = monge_shortest_path<T>(N, cost);
    return dp[N] - lambda * d;
  };

  T L = -3 * f_lim - 10;
  T R = 3 * f_lim + 10;
  T x = binary_search([&](T x) -> bool { return calc_L(x - 1) <= calc_L(x); },
                      L, R);
  return calc_L(x);
}
#line 5 "main.cpp"

void solve() {
  LL(N, K);
  chmin(K, N - 1);
  VEC(int, A, N);
  auto cost = all_range_inversion<int>(A);
  auto f = [&](int L, int R) -> ll { return cost[L][R]; };
  ll ANS = monge_shortest_path_d_edge<ll>(N, K + 1, N * N, f);
  print(ANS);
}

signed main() {
  INT(T);
  FOR(T) solve();
  return 0;
}

详细

Test #1:

score: 100
Accepted
time: 2ms
memory: 3440kb

input:

2
6 1
4 5 6 2 2 1
6 2
4 5 6 2 2 1

output:

2
0

result:

ok 2 lines

Test #2:

score: 0
Accepted
time: 20ms
memory: 3396kb

input:

349
6 2
2 1 2 1 2 1
48 12
42 47 39 39 27 25 22 44 45 13 5 48 38 4 37 6 24 10 42 38 12 37 31 19 44 6 29 17 7 12 7 26 35 24 15 9 37 3 27 21 33 29 34 20 14 30 31 21
48 12
1 43 17 46 17 39 40 22 25 2 22 12 4 11 38 12 4 11 1 5 39 44 37 10 19 20 42 45 2 45 37 20 48 34 16 41 23 18 13 44 47 21 29 4 23 18 16...

output:

1
18
15
145
0
2
1
0
13
13
23
0
0
0
1
0
0
0
0
0
0
0
0
161
3
0
0
1
0
0
0
0
0
0
1
0
3
0
0
1
0
0
1
0
0
1
4
0
0
0
0
0
0
0
0
2
0
2
0
0
8
280
0
0
34
4
0
1
0
0
3
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
0
2
0
0
0
0
0
0
0
8
1
8
0
0
0
0
1
11
5
0
0
0
6
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
13
1
0
0
0
...

result:

ok 349 lines

Test #3:

score: 0
Accepted
time: 45ms
memory: 7492kb

input:

6
1000 333
84886 84887 84732 83775 83776 83777 81234 80288 79661 79243 79244 78520 78521 78522 78523 78524 78525 79041 79042 78509 78120 77073 77432 77433 76111 75362 75363 75364 75365 75366 73979 73980 73981 73982 73983 73984 73472 73473 73075 72948 72949 72727 72728 72383 72384 72272 72273 72274 7...

output:

0
15
683
156
8
242025

result:

ok 6 lines

Test #4:

score: 0
Accepted
time: 156ms
memory: 143920kb

input:

1
6000 1000
35 111 78 14 3 104 13 88 52 138 47 116 208 21 169 90 149 132 146 223 65 193 176 174 175 233 18 164 102 141 163 159 48 85 184 201 215 237 89 139 179 172 68 73 216 80 143 221 61 60 42 207 219 16 43 225 120 44 1 196 157 202 194 137 156 145 27 40 70 217 170 91 77 92 34 54 29 51 140 198 49 18...

output:

847

result:

ok single line: '847'

Test #5:

score: 0
Accepted
time: 154ms
memory: 143988kb

input:

1
6000 2990
1500 1499 1498 1497 1496 1495 1494 1493 1492 1491 1490 1489 1488 1487 1486 1485 1484 1483 1482 1481 1480 1479 1478 1477 1476 1475 1474 1473 1472 1471 1470 1469 1468 1467 1466 1465 1464 1463 1462 1461 1460 1459 1458 1457 1456 1455 1454 1453 1452 1451 1450 1449 1448 1447 1446 1445 1444 144...

output:

8

result:

ok single line: '8'

Test #6:

score: 0
Accepted
time: 162ms
memory: 144000kb

input:

1
6000 2442
180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 ...

output:

15

result:

ok single line: '15'

Test #7:

score: 0
Accepted
time: 190ms
memory: 144000kb

input:

1
6000 1100
587239732 341164140 291813224 988290120 53068601 753624625 858461092 949829430 434273763 366369033 221857040 941264717 466308039 367346550 175500843 354302898 380134504 706309233 531982203 378662525 758240314 649219920 350560644 674837065 874382954 509572170 167839902 336312571 979805021...

output:

3556

result:

ok single line: '3556'

Test #8:

score: 0
Accepted
time: 149ms
memory: 143912kb

input:

1
6000 592
5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 5969 5970 5971 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961...

output:

2

result:

ok single line: '2'

Test #9:

score: 0
Accepted
time: 133ms
memory: 144000kb

input:

1
6000 5998
6000000 5999000 5998000 5997000 5996000 5995000 5994000 5993000 5992000 5991000 5990000 5989000 5988000 5987000 5986000 5985000 5984000 5983000 5982000 5981000 5980000 5979000 5978000 5977000 5976000 5975000 5974000 5973000 5972000 5971000 5970000 5969000 5968000 5967000 5966000 5965000 ...

output:

1

result:

ok single line: '1'