QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#764419 | #7711. Rikka with Lines | Jay202 | AC ✓ | 776ms | 20748kb | Rust | 4.0kb | 2024-11-20 09:03:49 | 2024-11-20 09:03:57 |
Judging History
answer
use std::io::{self, BufRead, Write};
use std::cmp::Ordering;
use std::ops::Neg;
#[derive(Debug, Clone, Copy)]
struct Rational(i128, i128);
impl Rational {
fn normalize(&self) -> Self {
let gcd = gcd(self.0, self.1);
let num = self.0 / gcd;
let den = self.1 / gcd;
if den < 0 {
Rational(-num, -den)
} else {
Rational(num, den)
}
}
}
fn gcd(a: i128, b: i128) -> i128 {
if b == 0 {
a.abs()
} else {
gcd(b, a % b)
}
}
impl Neg for Rational {
type Output = Self;
fn neg(self) -> Self::Output {
Rational(-self.0, self.1).normalize()
}
}
impl PartialEq for Rational {
fn eq(&self, o: &Self) -> bool {
self.0 * o.1 == self.1 * o.0
}
}
impl Eq for Rational {}
impl PartialOrd for Rational {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
let lhs = self.0 * other.1;
let rhs = other.0 * self.1;
lhs.partial_cmp(&rhs)
}
}
impl Ord for Rational {
fn cmp(&self, other: &Self) -> Ordering {
self.partial_cmp(other).unwrap()
}
}
struct FenwickTree {
tree: Vec<i64>,
size: usize,
}
impl FenwickTree {
pub fn new(size: usize) -> Self {
FenwickTree {
tree: vec![0; size + 1],
size,
}
}
pub fn sum(&self, idx: usize) -> i64 {
let mut sum = 0;
let mut i = idx as isize;
while i > 0 {
sum += self.tree[i as usize];
i -= i & -i;
}
sum
}
pub fn add(&mut self, idx: usize, value: i64) {
let mut i = idx as isize;
while (i as usize) <= self.size {
self.tree[i as usize] += value;
i += i & -i;
}
}
}
fn main() {
let mut iter = io::stdin().lock().lines();
let mut writer = io::BufWriter::new(io::stdout());
let t: usize = iter.next().unwrap().unwrap().trim().parse().unwrap();
for _ in 0..t {
let v: Vec<i128> = iter.next().unwrap().unwrap()
.split_whitespace().map(|x| x.parse().unwrap()).collect();
let (n, x1, y1, x2, y2) = (v[0] as usize, v[1], v[2], v[3], v[4]);
let mut seg: Vec<(usize, usize)> = vec![(0, 0); n];
let mut pos: Vec<(i32, Rational, usize, usize)> = vec![];
for i in 0..n {
let v: Vec<i128> = iter.next().unwrap().unwrap()
.split_whitespace().map(|x| x.parse().unwrap()).collect();
let (a, b) = (v[0], v[1]);
let p1 = Rational(y2 - b, a).normalize();
let mut dir = 0;
if Rational(x1, 1) < p1 && p1 <= Rational(x2, 1) {
pos.push((1, -p1, i, dir));
dir += 1;
}
let p2 = Rational(a * x1 + b, 1);
if y1 < p2.0 && p2.0 <= y2 {
pos.push((2, -p2, i, dir));
dir += 1;
}
let p3 = Rational(y1 - b, a).normalize();
if Rational(x1, 1) <= p3 && p3 < Rational(x2, 1) {
pos.push((3, p3, i, dir));
dir += 1;
}
let p4 = Rational(a * x2 + b, 1);
if y1 <= p4.0 && p4.0 < y2 {
pos.push((4, p4, i, dir));
// dir += 1;
}
}
pos.sort();
let mut idx = 1;
seg[pos[0].2].0 = idx;
seg[pos[0].2].1 = idx;
for i in 1..pos.len() {
if pos[i].0 != pos[i - 1].0 || pos[i].1 != pos[i- 1].1 { idx += 1; }
seg[pos[i].2].1 = idx;
if pos[i].3 == 0 {
seg[pos[i].2].0 = idx;
}
}
seg.sort();
let mut f = FenwickTree::new(idx);
let mut ret: i64 = 0;
for (l, r) in seg {
if l == 0 { continue; }
ret += f.sum(r) - f.sum(l - 1);
f.add(r, 1);
}
_ = writeln!(writer, "{}", ret);
}
writer.flush().unwrap();
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 2100kb
input:
1 4 0 0 2 2 2 -1 1 0 -1 2 2 2
output:
4
result:
ok 1 number(s): "4"
Test #2:
score: 0
Accepted
time: 776ms
memory: 20748kb
input:
1000 99981 -729383395 -411431000737086146 -663099572 622842060014806018 6815159 -4872972553264521 -44664715 3425012672809037 -896158824 -386342591542384 -375531970 1040294806535662 483111943 -6742268275140254 611052273 -1055860484502308 434838119 6111752598959468 848557869 532300694586514 857250003 ...
output:
1698824 4934994056 4441828315 4940204114 50258056 114560 286 121981 733 118004 1443 111163 115592 38 132 969 112781 115434 115592 1780 1774 116291 109859 246 56 656 116385 110419 3004 1482 111880 117084 281 115308 13187 112786 112123 109307 110632 119 158 120389 118502 117113 104312 111069 134 11784...
result:
ok 1000 numbers