QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#753812#9553. The Hermitucup-team133#AC ✓96ms5076kbC++2319.8kb2024-11-16 13:40:202024-11-16 13:40:21

Judging History

你现在查看的是测评时间为 2024-11-16 13:40:21 的历史记录

  • [2024-11-18 19:45:54]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:AC
  • 用时:96ms
  • 内存:5080kb
  • [2024-11-18 19:43:48]
  • hack成功,自动添加数据
  • (/hack/1196)
  • [2024-11-16 13:40:21]
  • 评测
  • 测评结果:100
  • 用时:96ms
  • 内存:5076kb
  • [2024-11-16 13:40:20]
  • 提交

answer

#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif

template <class T> std::istream& operator>>(std::istream& is, std::vector<T>& v) {
    for (auto& e : v) {
        is >> e;
    }
    return is;
}

template <class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
    for (std::string_view sep = ""; const auto& e : v) {
        os << std::exchange(sep, " ") << e;
    }
    return os;
}

template <class T, class U = T> bool chmin(T& x, U&& y) {
    return y < x and (x = std::forward<U>(y), true);
}

template <class T, class U = T> bool chmax(T& x, U&& y) {
    return x < y and (x = std::forward<U>(y), true);
}

template <class T> void mkuni(std::vector<T>& v) {
    std::ranges::sort(v);
    auto result = std::ranges::unique(v);
    v.erase(result.begin(), result.end());
}

template <class T> int lwb(const std::vector<T>& v, const T& x) {
    return std::distance(v.begin(), std::ranges::lower_bound(v, x));
}

#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

template <typename T> struct Binomial {
    Binomial(int MAX = 0) : n(1), facs(1, T(1)), finvs(1, T(1)), invs(1, T(1)) {
        assert(T::mod() != 0);
        if (MAX > 0) extend(MAX + 1);
    }

    T fac(int i) {
        assert(i >= 0);
        while (n <= i) extend();
        return facs[i];
    }

    T finv(int i) {
        assert(i >= 0);
        while (n <= i) extend();
        return finvs[i];
    }

    T inv(int i) {
        assert(i >= 0);
        while (n <= i) extend();
        return invs[i];
    }

    T P(int n, int r) {
        if (n < r or r < 0) return 0;
        return fac(n) * finv(n - r);
    }

    T C(int n, int r) {
        if (n < r or r < 0) return 0;
        return fac(n) * finv(n - r) * finv(r);
    }

    T H(int n, int r) {
        if (n < 0 or r < 0) return 0;
        return r == 0 ? 1 : C(n + r - 1, r);
    }

    T negative_binom(int n, int k) { return H(k, n); }

    T C_naive(int n, int r) {
        if (n < r or r < 0) return 0;
        T res = 1;
        r = std::min(r, n - r);
        for (int i = 1; i <= r; i++) res *= inv(i) * (n--);
        return res;
    }

    T catalan(int n) {
        if (n < 0) return 0;
        return fac(2 * n) * finv(n + 1) * finv(n);
    }

    T catalan_pow(int n, int k) {
        if (n < 0 or k < 0) return 0;
        if (k == 0) return n == 0 ? 1 : 0;
        return inv(n + k) * k * C(2 * n + k - 1, n);
    }

    T calatan1(int n, int m) { return C(n + m, m) - C(n + m, m - 1); }

    T catalan2(int n, int m, int k) { return n - m <= -k ? 0 : C(n + m, m) - C(n + m, m - k); }

    T narayana(int n, int k) {
        if (n < k or k <= 0) return 0;
        return C(n, k) * C(n, k - 1) * inv(n);
    }

    T grid_sum(int x, int y) {
        if (x < 0 or y < 0) return 0;
        return C(x + y + 2, x + 1) - 1;
    }

    T grid_sum2(int xl, int xr, int yl, int yr) {
        if (xl >= xr or yl >= yr) return 0;
        xl--, xr--, yl--, yr--;
        return grid_sum(xr, yr) - grid_sum(xl, yr) - grid_sum(xr, yl) + grid_sum(xl, yl);
    }

  private:
    int n;
    std::vector<T> facs, finvs, invs;

    inline void extend(int m = -1) {
        if (m == -1) m = n * 2;
        m = std::min(m, T::mod());
        if (n >= m) return;
        facs.resize(m);
        finvs.resize(m);
        invs.resize(m);
        for (int i = n; i < m; i++) facs[i] = facs[i - 1] * i;
        finvs[m - 1] = T(1) / facs[m - 1];
        invs[m - 1] = finvs[m - 1] * facs[m - 2];
        for (int i = m - 2; i >= n; i--) {
            finvs[i] = finvs[i + 1] * (i + 1);
            invs[i] = finvs[i] * facs[i - 1];
        }
        n = m;
    }
};

using namespace std;

using ll = long long;

using mint = atcoder::modint998244353;

map<pair<int, int>, mint> mp;
Binomial<mint> BINOM;

mint solve(int m, int n) {  // 2 以上 m 以下から n 枚選ぶ
    if (n <= 1) return 0;
    if (mp.count({m, n})) return mp[{m, n}];
    mint res = 0;
    for (int i = 2; i <= m; i++) {
        mint sum = 0;
        sum += (BINOM.C(m - i, n - 1) - BINOM.C(m / i - 1, n - 1)) * n;  // i と i の倍数以外を両方含む
        sum += solve(m / i, n - 1);  // i を含み、それ以外は全て i の倍数
        res += sum;
    }
    return mp[{m, n}] = res;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(15);

    int m, n;
    cin >> m >> n;

    mint ans = solve(m, n) + solve(m, n - 1);
    cout << ans.val() << "\n";
    return 0;
}

这程序好像有点Bug,我给组数据试试?

詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 3572kb

input:

4 3

output:

7

result:

ok 1 number(s): "7"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3596kb

input:

11 4

output:

1187

result:

ok 1 number(s): "1187"

Test #3:

score: 0
Accepted
time: 89ms
memory: 4920kb

input:

100000 99999

output:

17356471

result:

ok 1 number(s): "17356471"

Test #4:

score: 0
Accepted
time: 8ms
memory: 3876kb

input:

11451 1919

output:

845616153

result:

ok 1 number(s): "845616153"

Test #5:

score: 0
Accepted
time: 85ms
memory: 4892kb

input:

99998 12345

output:

936396560

result:

ok 1 number(s): "936396560"

Test #6:

score: 0
Accepted
time: 0ms
memory: 3620kb

input:

100000 1

output:

0

result:

ok 1 number(s): "0"

Test #7:

score: 0
Accepted
time: 93ms
memory: 4956kb

input:

100000 15

output:

190067060

result:

ok 1 number(s): "190067060"

Test #8:

score: 0
Accepted
time: 0ms
memory: 3616kb

input:

10 3

output:

299

result:

ok 1 number(s): "299"

Test #9:

score: 0
Accepted
time: 0ms
memory: 3552kb

input:

10 4

output:

743

result:

ok 1 number(s): "743"

Test #10:

score: 0
Accepted
time: 0ms
memory: 3556kb

input:

10 5

output:

1129

result:

ok 1 number(s): "1129"

Test #11:

score: 0
Accepted
time: 0ms
memory: 3656kb

input:

15 6

output:

28006

result:

ok 1 number(s): "28006"

Test #12:

score: 0
Accepted
time: 0ms
memory: 3620kb

input:

15 7

output:

42035

result:

ok 1 number(s): "42035"

Test #13:

score: 0
Accepted
time: 0ms
memory: 3504kb

input:

123 45

output:

214851327

result:

ok 1 number(s): "214851327"

Test #14:

score: 0
Accepted
time: 1ms
memory: 3580kb

input:

998 244

output:

964050559

result:

ok 1 number(s): "964050559"

Test #15:

score: 0
Accepted
time: 1ms
memory: 3832kb

input:

1919 810

output:

379720338

result:

ok 1 number(s): "379720338"

Test #16:

score: 0
Accepted
time: 1ms
memory: 3900kb

input:

1048 576

output:

216543264

result:

ok 1 number(s): "216543264"

Test #17:

score: 0
Accepted
time: 1ms
memory: 3624kb

input:

999 777

output:

635548531

result:

ok 1 number(s): "635548531"

Test #18:

score: 0
Accepted
time: 84ms
memory: 4996kb

input:

99999 77777

output:

448144614

result:

ok 1 number(s): "448144614"

Test #19:

score: 0
Accepted
time: 27ms
memory: 4180kb

input:

34527 6545

output:

748108997

result:

ok 1 number(s): "748108997"

Test #20:

score: 0
Accepted
time: 8ms
memory: 3880kb

input:

12345 12

output:

777496209

result:

ok 1 number(s): "777496209"

Test #21:

score: 0
Accepted
time: 0ms
memory: 3620kb

input:

1 1

output:

0

result:

ok 1 number(s): "0"

Test #22:

score: 0
Accepted
time: 86ms
memory: 5056kb

input:

100000 10101

output:

855985819

result:

ok 1 number(s): "855985819"

Test #23:

score: 0
Accepted
time: 87ms
memory: 4892kb

input:

100000 91919

output:

92446940

result:

ok 1 number(s): "92446940"

Test #24:

score: 0
Accepted
time: 92ms
memory: 5076kb

input:

100000 77979

output:

106899398

result:

ok 1 number(s): "106899398"

Test #25:

score: 0
Accepted
time: 7ms
memory: 4112kb

input:

10000 11

output:

326411649

result:

ok 1 number(s): "326411649"

Test #26:

score: 0
Accepted
time: 3ms
memory: 4896kb

input:

100000 2

output:

15322970

result:

ok 1 number(s): "15322970"

Test #27:

score: 0
Accepted
time: 8ms
memory: 4992kb

input:

100000 3

output:

93355797

result:

ok 1 number(s): "93355797"

Test #28:

score: 0
Accepted
time: 83ms
memory: 4964kb

input:

100000 99998

output:

331850772

result:

ok 1 number(s): "331850772"

Test #29:

score: 0
Accepted
time: 88ms
memory: 4920kb

input:

100000 99996

output:

885066226

result:

ok 1 number(s): "885066226"

Test #30:

score: 0
Accepted
time: 9ms
memory: 3884kb

input:

13115 2964

output:

0

result:

ok 1 number(s): "0"

Test #31:

score: 0
Accepted
time: 88ms
memory: 5076kb

input:

100000 17

output:

425792977

result:

ok 1 number(s): "425792977"

Test #32:

score: 0
Accepted
time: 87ms
memory: 4896kb

input:

99991 16

output:

667323936

result:

ok 1 number(s): "667323936"

Test #33:

score: 0
Accepted
time: 91ms
memory: 4920kb

input:

99991 17

output:

627396741

result:

ok 1 number(s): "627396741"

Test #34:

score: 0
Accepted
time: 90ms
memory: 5008kb

input:

99991 18

output:

874158501

result:

ok 1 number(s): "874158501"

Test #35:

score: 0
Accepted
time: 84ms
memory: 5068kb

input:

100000 100000

output:

99999

result:

ok 1 number(s): "99999"

Test #36:

score: 0
Accepted
time: 82ms
memory: 4968kb

input:

94229 94229

output:

94228

result:

ok 1 number(s): "94228"

Test #37:

score: 0
Accepted
time: 79ms
memory: 4892kb

input:

94229 94223

output:

476599876

result:

ok 1 number(s): "476599876"

Test #38:

score: 0
Accepted
time: 0ms
memory: 3820kb

input:

2 1

output:

0

result:

ok 1 number(s): "0"

Test #39:

score: 0
Accepted
time: 0ms
memory: 3864kb

input:

2 2

output:

0

result:

ok 1 number(s): "0"

Test #40:

score: 0
Accepted
time: 0ms
memory: 3556kb

input:

3 1

output:

0

result:

ok 1 number(s): "0"

Test #41:

score: 0
Accepted
time: 0ms
memory: 3616kb

input:

3 2

output:

2

result:

ok 1 number(s): "2"

Test #42:

score: 0
Accepted
time: 0ms
memory: 3784kb

input:

3 3

output:

2

result:

ok 1 number(s): "2"

Test #43:

score: 0
Accepted
time: 0ms
memory: 3560kb

input:

9 2

output:

44

result:

ok 1 number(s): "44"

Test #44:

score: 0
Accepted
time: 0ms
memory: 3812kb

input:

9 3

output:

206

result:

ok 1 number(s): "206"

Test #45:

score: 0
Accepted
time: 0ms
memory: 3608kb

input:

9 4

output:

441

result:

ok 1 number(s): "441"

Test #46:

score: 0
Accepted
time: 0ms
memory: 3816kb

input:

9 7

output:

224

result:

ok 1 number(s): "224"

Test #47:

score: 0
Accepted
time: 61ms
memory: 4940kb

input:

70839 22229

output:

0

result:

ok 1 number(s): "0"

Test #48:

score: 0
Accepted
time: 55ms
memory: 4224kb

input:

65536 17

output:

698801006

result:

ok 1 number(s): "698801006"

Test #49:

score: 0
Accepted
time: 58ms
memory: 4168kb

input:

65535 17

output:

433312902

result:

ok 1 number(s): "433312902"

Test #50:

score: 0
Accepted
time: 92ms
memory: 5008kb

input:

99856 317

output:

932131332

result:

ok 1 number(s): "932131332"

Test #51:

score: 0
Accepted
time: 96ms
memory: 4972kb

input:

99856 318

output:

398997854

result:

ok 1 number(s): "398997854"

Test #52:

score: 0
Accepted
time: 4ms
memory: 4904kb

input:

99856 2

output:

984791559

result:

ok 1 number(s): "984791559"

Test #53:

score: 0
Accepted
time: 86ms
memory: 5076kb

input:

100000 50000

output:

309108799

result:

ok 1 number(s): "309108799"

Extra Test:

score: 0
Extra Test Passed