QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#731150#2517. Critical StructuresvwxyzAC ✓1423ms127900kbPython314.3kb2024-11-10 00:10:302024-11-10 00:10:31

Judging History

你现在查看的是最新测评结果

  • [2024-11-10 00:10:31]
  • 评测
  • 测评结果:AC
  • 用时:1423ms
  • 内存:127900kb
  • [2024-11-10 00:10:30]
  • 提交

answer

import math

class Graph:
    def __init__(self,V,edges=None,graph=None,directed=False,weighted=False,inf=float("inf")):
        self.V=V
        self.directed=directed
        self.weighted=weighted
        self.inf=inf
        if graph!=None:
            self.graph=graph
            """
            self.edges=[]
            for i in range(self.V):
                if self.weighted:
                    for j,d in self.graph[i]:
                        if self.directed or not self.directed and i<=j:
                            self.edges.append((i,j,d))
                else:
                    for j in self.graph[i]:
                        if self.directed or not self.directed and i<=j:
                            self.edges.append((i,j))
            """
        else:
            self.edges=edges
            self.graph=[[] for i in range(self.V)]
            if weighted:
                for i,j,d in self.edges:
                    self.graph[i].append((j,d))
                    if not self.directed:
                        self.graph[j].append((i,d))
            else:
                for i,j in self.edges:
                    self.graph[i].append(j)
                    if not self.directed:
                        self.graph[j].append(i)

    def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False):
        seen=[False]*self.V
        finished=[False]*self.V
        if directed_acyclic or cycle_detection or topological_sort:
            dag=True
        if euler_tour:
            et=[]
        if linked_components:
            lc=[]
        if lowlink:
            order=[None]*self.V
            ll=[None]*self.V
            idx=0
        if parents or cycle_detection or lowlink or subtree_size:
            ps=[None]*self.V
        if postorder or topological_sort:
            post=[]
        if preorder:
            pre=[]
        if subtree_size:
            ss=[1]*self.V
        if unweighted_dist or bipartite_graph:
            uwd=[self.inf]*self.V
            uwd[s]=0
        if weighted_dist:
            wd=[self.inf]*self.V
            wd[s]=0
        stack=[(s,0)] if self.weighted else [s]
        while stack:
            if self.weighted:
                x,d=stack.pop()
            else:
                x=stack.pop()
            if not seen[x]:
                seen[x]=True
                stack.append((x,d) if self.weighted else x)
                if euler_tour:
                    et.append(x)
                if linked_components:
                    lc.append(x)
                if lowlink:
                    order[x]=idx
                    ll[x]=idx
                    idx+=1
                if preorder:
                    pre.append(x)
                for y in self.graph[x]:
                    if self.weighted:
                        y,d=y
                    if not seen[y]:
                        stack.append((y,d) if self.weighted else y)
                        if parents or cycle_detection or lowlink or subtree_size:
                            ps[y]=x
                        if unweighted_dist or bipartite_graph:
                            uwd[y]=uwd[x]+1
                        if weighted_dist:
                            wd[y]=wd[x]+d
                    elif not finished[y]:
                        if (directed_acyclic or cycle_detection or topological_sort) and dag:
                            dag=False
                            if cycle_detection:
                                cd=(y,x)
            elif not finished[x]:
                finished[x]=True
                if euler_tour:
                    et.append(~x)
                if lowlink:
                    bl=True
                    for y in self.graph[x]:
                        if self.weighted:
                            y,d=y
                        if ps[x]==y and bl:
                            bl=False
                            continue
                        ll[x]=min(ll[x],order[y])
                    if x!=s:
                        ll[ps[x]]=min(ll[ps[x]],ll[x])
                if postorder or topological_sort:
                    post.append(x)
                if subtree_size:
                    for y in self.graph[x]:
                        if self.weighted:
                            y,d=y
                        if y==ps[x]:
                            continue
                        ss[x]+=ss[y]
        if bipartite_graph:
            bg=[[],[]]
            for tpl in self.edges:
                x,y=tpl[:2] if self.weighted else tpl
                if uwd[x]==self.inf or uwd[y]==self.inf:
                    continue
                if not uwd[x]%2^uwd[y]%2:
                    bg=False
                    break
            else:
                for x in range(self.V):
                    if uwd[x]==self.inf:
                        continue
                    bg[uwd[x]%2].append(x)
        retu=()
        if bipartite_graph:
            retu+=(bg,)
        if cycle_detection:
            if dag:
                cd=[]
            else:
                y,x=cd
                cd=self.Route_Restoration(y,x,ps)
            retu+=(cd,)
        if directed_acyclic:
            retu+=(dag,)
        if euler_tour:
            retu+=(et,)
        if linked_components:
            retu+=(lc,)
        if lowlink:
            retu=(ll,)
        if parents:
            retu+=(ps,)
        if postorder:
            retu+=(post,)
        if preorder:
            retu+=(pre,)
        if subtree_size:
            retu+=(ss,)
        if topological_sort:
            if dag:
                tp_sort=post[::-1]
            else:
                tp_sort=[]
            retu+=(tp_sort,)
        if unweighted_dist:
            retu+=(uwd,)
        if weighted_dist:
            retu+=(wd,)
        if len(retu)==1:
            retu=retu[0]
        return retu

    def Bridges(self):
        lowlink,preorder=self.MIV_DFS(lowlink=True,preorder=True)
        order=[None]*self.V
        for x in range(self.V):
            order[preorder[x]]=x
        bridges=[]
        for e in self.edges:
            if self.weighted:
                x,y,d=e
            else:
                x,y=e
            if order[x]<lowlink[y] or order[y]<lowlink[x]:
                bridges.append(e)
        return bridges

    def Articulation_Points(self):
        lowlink,parents,preorder=self.MIV_DFS(lowlink=True,parents=True,preorder=True)
        order=[None]*self.V
        for x in range(self.V):
            order[preorder[x]]=x
        articulation_points=[]
        for x in range(self.V):
            if parents[x]==None:
                if len({y for y in self.graph[x] if parents[y]==x})>=2:
                    articulation_points.append(x)
            else:
                for y in self.graph[x]:
                    if parents[y]!=x:
                        continue
                    if order[x]<=lowlink[y]:
                        articulation_points.append(x)
                        break
        return articulation_points

    def MIV_DFS(self,initial_vertices=None,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False):
        if initial_vertices==None:
            initial_vertices=[s for s in range(self.V)]
        seen=[False]*self.V
        finished=[False]*self.V
        if bipartite_graph:
            bg=[None]*self.V
            cnt=-1
        if directed_acyclic or cycle_detection or topological_sort:
            dag=True
        if euler_tour:
            et=[]
        if linked_components:
            lc=[]
        if lowlink:
            order=[None]*self.V
            ll=[None]*self.V
            idx=0
        if parents or cycle_detection or lowlink or subtree_size:
            ps=[None]*self.V
        if postorder or topological_sort:
            post=[]
        if preorder:
            pre=[]
        if subtree_size:
            ss=[1]*self.V
        if bipartite_graph or unweighted_dist:
            uwd=[self.inf]*self.V
        if weighted_dist:
            wd=[self.inf]*self.V
        for s in initial_vertices:
            if seen[s]:
                continue
            if bipartite_graph:
                cnt+=1
                bg[s]=(cnt,0)
            if linked_components:
                lc.append([])
            if bipartite_graph or unweighted_dist:
                uwd[s]=0
            if weighted_dist:
                wd[s]=0
            stack=[(s,0)] if self.weighted else [s]
            while stack:
                if self.weighted:
                    x,d=stack.pop()
                else:
                    x=stack.pop()
                if not seen[x]:
                    seen[x]=True
                    stack.append((x,d) if self.weighted else x)
                    if euler_tour:
                        et.append(x)
                    if linked_components:
                        lc[-1].append(x)
                    if lowlink:
                        order[x]=idx
                        ll[x]=idx
                        idx+=1
                    if preorder:
                        pre.append(x)
                    for y in self.graph[x]:
                        if self.weighted:
                            y,d=y
                        if not seen[y]:
                            stack.append((y,d) if self.weighted else y)
                            if bipartite_graph:
                                bg[y]=(cnt,bg[x][1]^1)
                            if parents or cycle_detection or lowlink or subtree_size:
                                ps[y]=x
                            if unweighted_dist or bipartite_graph:
                                uwd[y]=uwd[x]+1
                            if weighted_dist:
                                wd[y]=wd[x]+d
                        elif not finished[y]:
                            if (directed_acyclic or cycle_detection or topological_sort) and dag:
                                dag=False
                                if cycle_detection:
                                    cd=(y,x)
                elif not finished[x]:
                    finished[x]=True
                    if euler_tour:
                        et.append(~x)
                    if lowlink:
                        bl=True
                        for y in self.graph[x]:
                            if self.weighted:
                                y,d=y
                            if ps[x]==y and bl:
                                bl=False
                                continue
                            ll[x]=min(ll[x],order[y])
                        if x!=s:
                            ll[ps[x]]=min(ll[ps[x]],ll[x])
                    if postorder or topological_sort:
                        post.append(x)
                    if subtree_size:
                        for y in self.graph[x]:
                            if self.weighted:
                                y,d=y
                            if y==ps[x]:
                                continue
                            ss[x]+=ss[y]
        if bipartite_graph:
            bg_=bg
            bg=[[[],[]] for i in range(cnt+1)]
            for tpl in self.edges:
                i,j=tpl[:2] if self.weighted else tpl
                if not bg_[i][1]^bg_[j][1]:
                    bg[bg_[i][0]]=False
            for x in range(self.V):
                if bg[bg_[x][0]]:
                    bg[bg_[x][0]][bg_[x][1]].append(x)
        retu=()
        if bipartite_graph:
            retu+=(bg,)
        if cycle_detection:
            if dag:
                cd=[]
            else:
                y,x=cd
                cd=self.Route_Restoration(y,x,ps)
            retu+=(cd,)
        if directed_acyclic:
            retu+=(dag,)
        if euler_tour:
            retu+=(et,)
        if linked_components:
            retu+=(lc,)
        if lowlink:
            retu=(ll,)
        if parents:
            retu+=(ps,)
        if postorder:
            retu+=(post,)
        if preorder:
            retu+=(pre,)
        if subtree_size:
            retu+=(ss,)
        if topological_sort:
            if dag:
                tp_sort=post[::-1]
            else:
                tp_sort=[]
            retu+=(tp_sort,)
        if unweighted_dist:
            retu+=(uwd,)
        if weighted_dist:
            retu+=(wd,)
        if len(retu)==1:
            retu=retu[0]
        return retu

    def TECCD(self):
        lowlink,preorder=self.MIV_DFS(lowlink=True,preorder=True)
        order=[None]*self.V
        for x in range(self.V):
            order[preorder[x]]=x
        edges=[]
        for e in self.edges:
            if self.weighted:
                x,y,d=e
            else:
                x,y=e
            if order[x]>=lowlink[y] and order[y]>=lowlink[x]:
                edges.append((x,y))
        teccd=Graph(self.V,edges=edges).MIV_DFS(linked_components=True)
        idx=[None]*self.V
        for i,lst in enumerate(teccd):
            for x in lst:
                idx[x]=i
        teccd_edges=[(idx[a],idx[b]) for a,b in self.edges if idx[a]!=idx[b]]
        return teccd,teccd_edges

T=int(input())
for t in range(T):
    N,M=map(int,input().split())
    edges=[]
    for m in range(M):
        a,b=map(int,input().split())
        a-=1;b-=1
        edges.append((a,b))
    G=Graph(N,edges=edges)
    P,E=G.TECCD()
    le=len(P)
    idx=[None]*N
    for i in range(le):
        for x in P[i]:
            idx[x]=i
    cnt=[0]*le
    for a,b in edges:
        if idx[a]==idx[b]:
            cnt[idx[a]]+=1
    ans_lst=[]
    ans_lst.append(len(G.Articulation_Points()))
    ans_lst.append(len(G.Bridges()))
    ans_lst.append(sum(1 for p in P if len(p)>=2)+ans_lst[1])
    ans_lst.append(max(max(cnt),1))
    g=math.gcd(ans_lst[2],ans_lst[3])
    ans_lst[2]//=g
    ans_lst[3]//=g
    print(*ans_lst)

詳細信息

Test #1:

score: 100
Accepted
time: 15ms
memory: 10772kb

input:

1
6 6
1 2
2 3
3 4
4 5
5 6
6 1

output:

0 0 1 6

result:

ok single line: '0 0 1 6'

Test #2:

score: 0
Accepted
time: 12ms
memory: 10764kb

input:

1
6 7
1 2
2 3
3 1
4 5
5 6
6 4
1 4

output:

2 1 1 1

result:

ok single line: '2 1 1 1'

Test #3:

score: 0
Accepted
time: 1423ms
memory: 127900kb

input:

10
6 6
1 2
2 3
3 4
4 5
5 6
6 1
5 4
1 2
2 3
3 4
4 5
5 7
1 2
1 3
3 4
4 5
5 3
1 4
1 5
13 16
1 2
1 6
1 3
1 7
3 7
4 6
4 5
5 6
5 7
7 8
8 9
7 10
10 11
12 13
10 12
10 13
10 11
1 2
2 3
2 4
3 5
4 5
4 6
6 7
7 8
6 8
8 9
8 10
3 3
1 2
2 3
3 1
44 66
1 5
1 12
1 33
2 27
2 31
2 32
2 35
2 37
2 40
3 6
3 30
3 44
4 20
4 ...

output:

0 0 1 6
3 4 4 1
1 1 1 3
4 5 7 8
4 4 3 2
0 0 1 3
8 9 10 57
0 0 1 499500
2 2 3 1777
108 112 113 1531

result:

ok 10 lines