QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#723583#9608. 皮鞋的多项式hos_lyric#0 0ms0kbC++1418.0kb2024-11-07 23:00:472024-11-07 23:00:48

Judging History

你现在查看的是最新测评结果

  • [2024-11-07 23:00:48]
  • 评测
  • 测评结果:0
  • 用时:0ms
  • 内存:0kb
  • [2024-11-07 23:00:47]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353U;
constexpr unsigned MO2 = 2U * MO;
constexpr int FFT_MAX = 23;
using Mint = ModInt<MO>;
constexpr Mint FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U, 922799308U, 781712469U, 476477967U, 166035806U, 258648936U, 584193783U, 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U, 996173970U, 363395222U, 565042129U, 733596141U, 267099868U, 15311432U};
constexpr Mint INV_FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U, 609441965U, 135236158U, 304459705U, 685443576U, 381598368U, 335559352U, 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U, 121392023U, 704923114U, 950391366U, 428961804U, 382752275U, 469870224U};
constexpr Mint FFT_RATIOS[FFT_MAX] = {911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U, 238493703U, 975955924U, 603855026U, 856644456U, 131300601U, 842657263U, 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U, 743006876U, 741047443U, 56250497U, 867605899U};
constexpr Mint INV_FFT_RATIOS[FFT_MAX] = {86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U, 155456985U, 797128860U, 90816748U, 860285882U, 927414960U, 354738543U, 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U, 438932459U, 359477183U, 824071951U, 103369235U};

// as[rev(i)] <- \sum_j \zeta^(ij) as[j]
void fft(Mint *as, int n) {
  assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);
  int m = n;
  if (m >>= 1) {
    for (int i = 0; i < m; ++i) {
      const unsigned x = as[i + m].x;  // < MO
      as[i + m].x = as[i].x + MO - x;  // < 2 MO
      as[i].x += x;  // < 2 MO
    }
  }
  if (m >>= 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + m; ++i) {
        const unsigned x = (prod * as[i + m]).x;  // < MO
        as[i + m].x = as[i].x + MO - x;  // < 3 MO
        as[i].x += x;  // < 3 MO
      }
      prod *= FFT_RATIOS[__builtin_ctz(++h)];
    }
  }
  for (; m; ) {
    if (m >>= 1) {
      Mint prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + m; ++i) {
          const unsigned x = (prod * as[i + m]).x;  // < MO
          as[i + m].x = as[i].x + MO - x;  // < 4 MO
          as[i].x += x;  // < 4 MO
        }
        prod *= FFT_RATIOS[__builtin_ctz(++h)];
      }
    }
    if (m >>= 1) {
      Mint prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + m; ++i) {
          const unsigned x = (prod * as[i + m]).x;  // < MO
          as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
          as[i + m].x = as[i].x + MO - x;  // < 3 MO
          as[i].x += x;  // < 3 MO
        }
        prod *= FFT_RATIOS[__builtin_ctz(++h)];
      }
    }
  }
  for (int i = 0; i < n; ++i) {
    as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
    as[i].x = (as[i].x >= MO) ? (as[i].x - MO) : as[i].x;  // < MO
  }
}

// as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)]
void invFft(Mint *as, int n) {
  assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);
  int m = 1;
  if (m < n >> 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + m; ++i) {
        const unsigned long long y = as[i].x + MO - as[i + m].x;  // < 2 MO
        as[i].x += as[i + m].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
    }
    m <<= 1;
  }
  for (; m < n >> 1; m <<= 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + (m >> 1); ++i) {
        const unsigned long long y = as[i].x + MO2 - as[i + m].x;  // < 4 MO
        as[i].x += as[i + m].x;  // < 4 MO
        as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      for (int i = i0 + (m >> 1); i < i0 + m; ++i) {
        const unsigned long long y = as[i].x + MO - as[i + m].x;  // < 2 MO
        as[i].x += as[i + m].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
    }
  }
  if (m < n) {
    for (int i = 0; i < m; ++i) {
      const unsigned y = as[i].x + MO2 - as[i + m].x;  // < 4 MO
      as[i].x += as[i + m].x;  // < 4 MO
      as[i + m].x = y;  // < 4 MO
    }
  }
  const Mint invN = Mint(n).inv();
  for (int i = 0; i < n; ++i) {
    as[i] *= invN;
  }
}

void fft(vector<Mint> &as) {
  fft(as.data(), as.size());
}
void invFft(vector<Mint> &as) {
  invFft(as.data(), as.size());
}

vector<Mint> convolve(vector<Mint> as, vector<Mint> bs) {
  if (as.empty() || bs.empty()) return {};
  const int len = as.size() + bs.size() - 1;
  int n = 1;
  for (; n < len; n <<= 1) {}
  as.resize(n); fft(as);
  bs.resize(n); fft(bs);
  for (int i = 0; i < n; ++i) as[i] *= bs[i];
  invFft(as);
  as.resize(len);
  return as;
}
vector<Mint> square(vector<Mint> as) {
  if (as.empty()) return {};
  const int len = as.size() + as.size() - 1;
  int n = 1;
  for (; n < len; n <<= 1) {}
  as.resize(n); fft(as);
  for (int i = 0; i < n; ++i) as[i] *= as[i];
  invFft(as);
  as.resize(len);
  return as;
}
// m := |as|, n := |bs|
// cs[k] = \sum[i-j=k] as[i] bs[j]  (0 <= k <= m-n)
// transpose of ((multiply by bs): K^[0,m-n] -> K^[0,m-1])
vector<Mint> middle(vector<Mint> as, vector<Mint> bs) {
  const int m = as.size(), n = bs.size();
  assert(m >= n); assert(n >= 1);
  int len = 1;
  for (; len < m; len <<= 1) {}
  as.resize(len, 0);
  fft(as);
  std::reverse(bs.begin(), bs.end());
  bs.resize(len, 0);
  fft(bs);
  for (int i = 0; i < len; ++i) as[i] *= bs[i];
  invFft(as);
  as.resize(m);
  as.erase(as.begin(), as.begin() + (n - 1));
  return as;
}
////////////////////////////////////////////////////////////////////////////////


struct Hld {
  int n, rt;
  // needs to be tree
  // vertex lists
  // modified in build(rt) (parent removed, heavy child first)
  vector<vector<int>> graph;
  vector<int> sz, par, dep;
  int zeit;
  vector<int> dis, fin, sid;
  // head vertex (minimum depth) in heavy path
  vector<int> head;

  Hld() : n(0), rt(-1), zeit(0) {}
  explicit Hld(int n_) : n(n_), rt(-1), graph(n), zeit(0) {}
  void ae(int u, int v) {
    assert(0 <= u); assert(u < n);
    assert(0 <= v); assert(v < n);
    graph[u].push_back(v);
    graph[v].push_back(u);
  }

  void dfsSz(int u) {
    sz[u] = 1;
    for (const int v : graph[u]) {
      auto it = std::find(graph[v].begin(), graph[v].end(), u);
      if (it != graph[v].end()) graph[v].erase(it);
      par[v] = u;
      dep[v] = dep[u] + 1;
      dfsSz(v);
      sz[u] += sz[v];
    }
  }
  void dfsHld(int u) {
    dis[u] = zeit++;
    const int deg = graph[u].size();
    if (deg > 0) {
      int vm = graph[u][0];
      int jm = 0;
      for (int j = 1; j < deg; ++j) {
        const int v = graph[u][j];
        if (sz[vm] < sz[v]) {
          vm = v;
          jm = j;
        }
      }
      swap(graph[u][0], graph[u][jm]);
      head[vm] = head[u];
      dfsHld(vm);
      for (int j = 1; j < deg; ++j) {
        const int v = graph[u][j];
        head[v] = v;
        dfsHld(v);
      }
    }
    fin[u] = zeit;
  }
  void build(int rt_) {
    assert(0 <= rt_); assert(rt_ < n);
    rt = rt_;
    sz.assign(n, 0);
    par.assign(n, -1);
    dep.assign(n, -1);
    dep[rt] = 0;
    dfsSz(rt);
    zeit = 0;
    dis.assign(n, -1);
    fin.assign(n, -1);
    head.assign(n, -1);
    head[rt] = rt;
    dfsHld(rt);
    assert(zeit == n);
    sid.assign(n, -1);
    for (int u = 0; u < n; ++u) sid[dis[u]] = u;
  }

  friend ostream &operator<<(ostream &os, const Hld &hld) {
    const int maxDep = *max_element(hld.dep.begin(), hld.dep.end());
    vector<string> ss(2 * maxDep + 1);
    int pos = 0, maxPos = 0;
    for (int j = 0; j < hld.n; ++j) {
      const int u = hld.sid[j];
      const int d = hld.dep[u];
      if (hld.head[u] == u) {
        if (j != 0) {
          pos = maxPos + 1;
          ss[2 * d - 1].resize(pos, '-');
          ss[2 * d - 1] += '+';
        }
      } else {
        ss[2 * d - 1].resize(pos, ' ');
        ss[2 * d - 1] += '|';
      }
      ss[2 * d].resize(pos, ' ');
      ss[2 * d] += std::to_string(u);
      if (maxPos < static_cast<int>(ss[2 * d].size())) {
        maxPos = ss[2 * d].size();
      }
    }
    for (int d = 0; d <= 2 * maxDep; ++d) os << ss[d] << '\n';
    return os;
  }

  bool contains(int u, int v) const {
    return (dis[u] <= dis[v] && dis[v] < fin[u]);
  }
  int lca(int u, int v) const {
    assert(0 <= u); assert(u < n);
    assert(0 <= v); assert(v < n);
    for (; head[u] != head[v]; ) (dis[u] > dis[v]) ? (u = par[head[u]]) : (v = par[head[v]]);
    return (dis[u] > dis[v]) ? v : u;
  }
  int jumpUp(int u, int d) const {
    assert(0 <= u); assert(u < n);
    assert(d >= 0);
    if (dep[u] < d) return -1;
    const int tar = dep[u] - d;
    for (u = head[u]; ; u = head[par[u]]) {
      if (dep[u] <= tar) return sid[dis[u] + (tar - dep[u])];
    }
  }
  int jump(int u, int v, int d) const {
    assert(0 <= u); assert(u < n);
    assert(0 <= v); assert(v < n);
    assert(d >= 0);
    const int l = lca(u, v);
    const int du = dep[u] - dep[l], dv = dep[v] - dep[l];
    if (d <= du) {
      return jumpUp(u, d);
    } else if (d <= du + dv) {
      return jumpUp(v, du + dv - d);
    } else {
      return -1;
    }
  }
  // [u, v) or [u, v]
  template <class F> void doPathUp(int u, int v, bool inclusive, F f) const {
    assert(contains(v, u));
    for (; head[u] != head[v]; u = par[head[u]]) f(dis[head[u]], dis[u] + 1);
    if (inclusive) {
      f(dis[v], dis[u] + 1);
    } else {
      if (v != u) f(dis[v] + 1, dis[u] + 1);
    }
  }
  // not path order, include lca(u, v) or not
  template <class F> void doPath(int u, int v, bool inclusive, F f) const {
    const int l = lca(u, v);
    doPathUp(u, l, false, f);
    doPathUp(v, l, inclusive, f);
  }

  // (vs, ps): compressed tree
  // vs: DFS order (sorted by dis)
  // vs[ps[x]]: the parent of vs[x]
  // ids[vs[x]] = x, not set for non-tree vertex
  vector<int> ids;
  pair<vector<int>, vector<int>> compress(vector<int> us) {
    // O(n) first time
    ids.resize(n, -1);
    std::sort(us.begin(), us.end(), [&](int u, int v) -> bool {
      return (dis[u] < dis[v]);
    });
    us.erase(std::unique(us.begin(), us.end()), us.end());
    int usLen = us.size();
    assert(usLen >= 1);
    for (int x = 1; x < usLen; ++x) us.push_back(lca(us[x - 1], us[x]));
    std::sort(us.begin(), us.end(), [&](int u, int v) -> bool {
      return (dis[u] < dis[v]);
    });
    us.erase(std::unique(us.begin(), us.end()), us.end());
    usLen = us.size();
    for (int x = 0; x < usLen; ++x) ids[us[x]] = x;
    vector<int> ps(usLen, -1);
    for (int x = 1; x < usLen; ++x) ps[x] = ids[lca(us[x - 1], us[x])];
    return make_pair(us, ps);
  }
};

////////////////////////////////////////////////////////////////////////////////


using Poly = vector<Mint>;

int N, Q;
vector<Poly> C;
vector<int> A, B;

Hld hld;

struct Solver {
  int len, block;
  vector<Poly> baby, giant, giantSum;
  void build(int jL, int jR);
  Mint query(int pos, int L, int R) const {
    const int x = pos / block;
    Mint ret = 0;
    for (int k = 0; k < (int)baby[pos].size(); ++k) {
      int l = max(L - k, 0);
      int r = min(R - k, (int)giantSum[x + 1].size() - 1);
      if (l <= r) {
        ret += giantSum[x + 1][r];
        if (l) ret -= giantSum[x + 1][l - 1];
      }
    }
    return ret;
  }
};
vector<Solver> solvers;

void Solver::build(int jL, int jR) {
// cerr<<"[build] ";pv(hld.sid.begin()+jL,hld.sid.begin()+jR);
  len = jR - jL;
  block = sqrt(len);
  len = (len + block - 1) / block * block;
  baby.resize(len);
  for (int j = jL; j < jR; ++j) {
    const int u = hld.sid[j];
    vector<Poly> fss;
    fss.push_back(C[u]);
    for (int k = 1; k < (int)hld.graph[u].size(); ++k) {
      const int v = hld.graph[u][k];
      fss.push_back(solvers[v].giant[0]);
    }
    for (int k = (int)fss.size(); --k >= 1; ) {
      const int kk = k & (k - 1);
      fss[kk] = convolve(fss[kk], fss[k]);
    }
    baby[j - jL] = fss[0];
  }
  for (int pos = jR - jL; pos < len; ++pos) {
    baby[pos] = Poly{1};
  }
  giant.resize(len / block + 1);
  giant.back() = Poly{1};
  for (int x = len / block; --x >= 0; ) {
    for (int y = block - 1; --y >= 0; ) {
      baby[x * block + y] = convolve(baby[x * block + y], baby[x * block + y+1]);
    }
    giant[x] = convolve(baby[x * block], giant[x+1]);
  }
  giantSum = giant;
  for (int x = 0; x <= len / block; ++x) {
    for (int k = 1; k < (int)giantSum[x].size(); ++k) {
      giantSum[x][k] += giantSum[x][k - 1];
    }
  }
// cerr<<"  baby = "<<baby<<endl;
// cerr<<"  giant = "<<giant<<endl;
// cerr<<"  giantSum = "<<giantSum<<endl;
}

int main() {
  for (; ~scanf("%d%d", &N, &Q); ) {
    C.resize(N);
    for (int u = 0; u < N; ++u) {
      int deg;
      scanf("%d", &deg);
      C[u].resize(deg + 1);
      for (int k = 0; k <= deg; ++k) {
        scanf("%u", &C[u][k].x);
      }
    }
    A.resize(N - 1);
    B.resize(N - 1);
    for (int i = 0; i < N - 1; ++i) {
      scanf("%d%d", &A[i], &B[i]);
      --A[i];
      --B[i];
    }
    
    hld = Hld(N);
    for (int i = 0; i < N - 1; ++i) {
      hld.ae(A[i], B[i]);
    }
    hld.build(0);
// cerr<<endl<<hld<<endl;
    
    solvers.assign(N, {});
    for (int j = N, jR = N; --j >= 0; ) {
      const int u = hld.sid[j];
      if (hld.head[u] == u) {
        solvers[u].build(j, jR);
        jR = j;
      }
    }
    
    int lastans = 0;
    for (; Q--; ) {
      int X, L, R;
      scanf("%d%d%d", &X, &L, &R);
      X ^= lastans;
      L ^= lastans;
      R ^= lastans;
// cerr<<COLOR("33")<<X<<" "<<L<<" "<<R<<COLOR()<<endl;
      --X;
assert(0<=X);assert(X<N);assert(L<=R);
      const int h = hld.head[X];
      const Mint ans = solvers[h].query(hld.dis[X] - hld.dis[h], L, R);
      printf("%u\n", ans.x);
      lastans = ans.x;
    }
  }
  return 0;
}

详细

Subtask #1:

score: 0
Runtime Error

Test #1:

score: 0
Runtime Error

input:

1977 200000
0 883734638
1 497045124 50605999
0 467033353
8 514303373 873913661 21585656 827572829 831599042 669912647 980444584 921677622 90967524
0 111009203
0 980468811
1 965285721 647475291
0 55665482
0 810210109
5 99482052 915734955 536563337 860629716 489661090 127640528
4 452261176 414532348 8...

output:


result:


Subtask #2:

score: 0
Runtime Error

Test #6:

score: 0
Runtime Error

input:

98154 200000
0 948053956
0 149079029
0 871940052
0 888807640
0 284687863
0 760258916
0 916765457
0 121680504
0 210430381
0 162441114
0 640680402
0 269559148
0 706423649
0 619089994
0 776236890
0 44769489
0 863235377
0 283984837
0 251593760
0 863377054
0 40488948
0 100272768
0 628132233
0 18841959
0 ...

output:


result:


Subtask #3:

score: 0
Runtime Error

Test #8:

score: 0
Runtime Error

input:

97330 200000
2 356080749 854511831 888131963
0 533633039
0 260190631
0 217335008
2 998111375 903316988 891866314
0 507509609
0 556810297
1 190927168 988903728
1 270553180 387224380
0 360295480
0 775464651
0 755424805
0 71030175
0 690904984
0 702271750
0 360541906
0 903384679
0 769283169
0 6990072
0 ...

output:


result:


Subtask #4:

score: 0
Runtime Error

Test #13:

score: 0
Runtime Error

input:

50000 50000
1 610345459 691411093
1 476654936 529767753
1 8856530 640833948
1 961473497 456987897
1 462733802 114971681
1 662244461 415955667
1 717992437 907944693
1 346097988 176526535
1 805826501 182409272
1 33105050 971783530
1 45972429 258997374
1 964103067 796756441
1 958668755 735146502
1 9543...

output:


result:


Subtask #5:

score: 0
Runtime Error

Test #21:

score: 0
Runtime Error

input:

19854 20000
1 150513542 240180212
0 987796281
0 90054116
1 191708494 438440429
0 192815969
0 867402303
1 531762469 210966860
2 95662022 345368425 199338548
0 269135053
0 816253511
0 66854944
0 319745952
0 202288549
0 492853777
0 410846691
0 824737426
0 821545014
0 72050044
0 534080091
1 542636124 52...

output:


result:


Subtask #6:

score: 0
Skipped

Dependency #1:

0%