QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#696878 | #7695. Double Up | snowythecat | AC ✓ | 5ms | 18900kb | C++20 | 11.5kb | 2024-11-01 04:46:59 | 2024-11-01 04:47:01 |
Judging History
answer
//must be compiled with c++20
/*
#pragma GCC target ("avx2")
#pragma GCC optimize ("O2")
#pragma GCC optimize ("unroll-loops")
*/
#pragma GCC optimize ("unroll-loops")
#include <algorithm>
#include <bits/stdc++.h>
#include <cerrno>
#include <ext/pb_ds/assoc_container.hpp>
#include <type_traits>
using namespace __gnu_pbds;
using namespace std;
#define fasterthanlight cin.tie(0); ios::sync_with_stdio(0);
#define ll long long
#define lll __int128
const ll inf = 1e9 + 7;
const ll inf2 = 1e9 + 9;
const ll inff= 998244353;
const ll infh = (1LL << 61) - 1;
#define pll pair<ll,ll>
#define pii pair<int,int>
#define vi vector<int>
#define vll vector<ll>
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define pb push_back
#define f0(i,n) for (int i=0;i<n;i++)
#define f1(i,n) for (int i=1;i<=n;i++)
#define ff0(i,n) for (int i=n-1;i>-1;i--)
#define ff1(i,n) for (int i=n;i>0;i--)
#define fs(i,a,b) for (int i=a;i<b;i++)
#define testcases int tzxhicjkha; cin>>tzxhicjkha;while (tzxhicjkha--)
#define usingfloats cout<<setprecision(20)
#define ineedtohash mll iqknabxiopk=1;for (ll iqknabxiop=0;iqknabxiop<HASHPOWMAX;iqknabxiop++){pows[iqknabxiop]=iqknabxiopk;iqknabxiopk*=B;}
#define sz(x) ((int)(x.size()))
template <class T> auto vect(const T& v, int n) { return vector<T>(n, v); }
template <class T, class... D> auto vect(const T& v, int n, D... m) {
return vector<decltype(vect(v, m...))>(n, vect(v, m...));
}
//2*10^6 powers for hashing
const ll HASHPOWMAX=2000005;
int msb(int n)
{
if (n==0){
//cout<<"F";
return 0;
}
int k = __builtin_clz(n);
return 31 - k;
}
ll lmsb(ll n)
{
if (n==0){
//cout<<"F";
return 0;
}
int k = __builtin_clzll(n);
return 63 - k;
}
//I have no idea if the below code is safe or good
istream &operator>>(istream &is,__int128 &v) {
string s;
is>>s;
v=0;
for(auto &it:s) if(isdigit(it)) v=v*10+it-'0';
if(s[0]=='-') v*=-1;
return is;
}
ostream &operator<<(ostream &os,const __int128 &v) {
if(v==0) return (os<<"0");
__int128 num=v;
if(v<0) os<<'-',num=-num;
string s;
for(;num>0;num/=10) s.pb((char)(num%10)+'0');
reverse(all(s));
return (os<<s);
}
/*
template<typename T, typename Q>ostream &operator<<(ostream &os,const pair<T,Q> &v) {
return (os<<v.first<<" "<<v.second);
}
*/
//some cursed cin vector shit
template<typename T> istream &operator>>(istream &is,vector<T> &v) {
for (T&i:v){
is>>i;
}
return is;
}
template<typename T> ostream &operator<<(ostream &os,const vector<T> &v) {
if (v.empty()){
return os;
}
for (int i=0;i<v.size()-1;i++){
os<<v[i]<<" ";
}
return os<<v[v.size()-1];
}
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count());
//const ll B = 100;
const ll B = uniform_int_distribution<ll>(1000, inf - 1)(rng);
/*
//some cursed code
//allows int x=in;
struct {
template<class T>
operator T() {
T x; std::cin >> x; return x;
}
} in;
//breaks if string
//so do string s = (string)in;
*/
//ty Mark for modint code that I will change
template<long long MOD>
struct ModInt {
long long v;
ModInt() {
v=0;
}
ModInt(long long _v) {
v = _v % MOD;
if (v < 0) {
v += MOD;
}
}
friend ModInt pow(ModInt base, long long exp) {
ModInt res = 1;
while (exp) {
if (exp & 1) {
res *= base;
}
base *= base;
exp >>= 1;
}
return res;
}
ModInt &operator+=(ModInt b) {
if ((v += b.v) >= MOD) {
v -= MOD;
}
return *this;
}
ModInt &operator-=(ModInt b) {
if ((v -= b.v) < 0) {
v += MOD;
}
return *this;
}
ModInt &operator*=(ModInt b) {
if constexpr (MOD==infh){
//UNSAFE CODE PROBABLY
uint64_t l1 = uint32_t(v), h1 = v >> 32;
uint64_t l2 = uint32_t(b.v), h2 = b.v >> 32;
uint64_t l = l1 * l2, m = l1 * h2 + l2 * h1, h = h1 * h2;
uint64_t ret = (l & MOD) + (l >> 61) + (h << 3) + (m >> 29) + (m << 35 >> 3) + 1;
ret = (ret & MOD) + (ret >> 61);
ret = (ret & MOD) + (ret >> 61);
v = ret - 1;
return *this;
}
else if constexpr (MOD<=INT_MAX){
//if less than or equal to INT_MAX, lll isn't needed
v=v * b.v % MOD;
return *this;
}
else{
v = (__int128)1 * v * b.v % MOD;
return *this;
}
}
//division is scuffed
ModInt &operator/=(ModInt b) {
*this *= pow(b, MOD - 2);
return *this;
}
friend ModInt operator+(ModInt a, ModInt b) {
return a += b;
}
friend ModInt operator-(ModInt a, ModInt b) {
return a -= b;
}
friend ModInt operator*(ModInt a, ModInt b) {
return a *= b;
}
friend ModInt operator/(ModInt a, ModInt b) {
return a /= b;
}
friend istream &operator>>(istream &is, ModInt &a) {
long long x;
is >> x;
a = ModInt(x);
return is;
}
friend ostream &operator<<(ostream &os, ModInt a) {
return os << a.v;
}
bool operator==(const ModInt& y) const{
return v == y.v;
}
bool operator!=(const ModInt& y) const{
return v != y.v;
}
ModInt& operator++() {
v++;
if (v == MOD) v = 0;
return *this;
}
ModInt& operator--() {
if (v == 0) v = MOD;
v--;
return *this;
}
ModInt operator++(int) {
ModInt result = *this;
++*this;
return result;
}
ModInt operator--(int) {
ModInt result = *this;
--*this;
return result;
}
//bad operators for completeness sake
bool operator>(const ModInt& y) const{
return v > y.v;
}
bool operator>=(const ModInt& y) const{
return v >= y.v;
}
bool operator<=(const ModInt& y) const{
return v <= y.v;
}
bool operator<(const ModInt& y) const{
return v < y.v;
}
};
using mll = ModInt<infh>;
using mint = ModInt<inf>;
using minf = ModInt<inff>;
ll exp(ll x, ll n, ll m=inf) {
assert(n >= 0);
x %= m; // note: m * m must be less than 2^63 to avoid ll overflow
ll res = 1;
while (n > 0) {
if (n % 2 == 1) { res = res * x % m; }
x = x * x % m;
n /= 2;
}
return res;
}
ll expu(ll x, ll n) {
assert(n >= 0);
ll res = 1;
while (n > 0) {
if (n % 2 == 1) { res = res * x; }
x = x * x;
n /= 2;
}
return res;
}
mll exph(mll base, ll exp) {
mll res = 1;
while (exp) {
if (exp & 1) {
res *= base;
}
base *= base;
exp >>= 1;
}
return res;
}
minf expf(minf base, ll exp) {
minf res = 1;
while (exp) {
if (exp & 1) {
res *= base;
}
base *= base;
exp >>= 1;
}
return res;
}
mint expo(mint base, ll exp) {
mint res = 1;
while (exp) {
if (exp & 1) {
res *= base;
}
base *= base;
exp >>= 1;
}
return res;
}
vector<mll> pows(HASHPOWMAX);
const mll HMODINV=exph(B,infh-2);
struct hashPart {
mll value;
int len;
hashPart() {
value=0;
len=0;
}
hashPart(mll x, int y) : value(x), len(y) {}
hashPart operator+=(hashPart b) {
hashPart a=hashPart(value * pows[b.len] + b.value, len + b.len);
(*this).value=a.value;
(*this).len=a.len;
return *this;
}
hashPart operator+(hashPart b) {
return hashPart(value * pows[b.len] + b.value, len + b.len);
}
bool operator==(hashPart b) {
return value == b.value;
}
};
template<class T>
struct hashString {
vector<mll> hash;
hashString(T s) {
hash.resize(int(s.size()) + 1);
for (int i = 0; i < int(s.size()); i++) {
hash[i + 1] = (hash[i] * B + s[i]);
}
while (int(pows.size()) < int(hash.size())) {
pows.push_back(pows.back() * B);
}
}
hashPart getHash(int l, int r) {
return hashPart(hash[r] -hash[l] * pows[r - l], r - l);
}
hashPart getHash() {
return getHash(0, hash.size() - 1);
}
};
//I don't understand the below code, all I know is it's good for hashing apparently
struct custom_hash {
static uint64_t splitmix64(uint64_t x) {
// http://xorshift.di.unimi.it/splitmix64.c
x += 0x9e3779b97f4a7c15;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return x ^ (x >> 31);
}
size_t operator()(uint64_t x) const {
static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x + FIXED_RANDOM);
}
};
ll es(ll x1, ll y1, ll x2, ll y2){
return (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2);
}
ll man(ll x1, ll y1, ll x2, ll y2){
return abs(x1-x2)+abs(y1-y2);
}
minf choose(int n,int k){
if (k>n){
return 0;
}
minf ret=1;
for (int i=n;i>n-k;i--){
ret*=i;
}
for (int i=1;i<=k;i++){
ret/=i;
}
return ret;
}
//stolen from geeks for geeks
vector<int> sieve(int n)
{
// Create a boolean array "prime[0..n]" and initialize
// all entries it as true. A value in prime[i] will
// finally be false if i is Not a prime, else true.
bool prime[n + 1];
memset(prime, true, sizeof(prime));
for (int p = 2; p * p <= n; p++) {
// If prime[p] is not changed, then it is a prime
if (prime[p] == true) {
// Update all multiples of p greater than or
// equal to the square of it numbers which are
// multiple of p and are less than p^2 are
// already been marked.
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
vector<int> ret;
// Print all prime numbers
for (int p = 2; p <= n; p++)
if (prime[p])
ret.pb(p);
return ret;
}
void setup(){
}
typedef tree<double,null_type,less_equal<double>,rb_tree_tag,tree_order_statistics_node_update> indexed_set;
void solve(){
int n;
cin>>n;
vector<int> nums;
for (int i=0;i<n;i++){
lll a;
cin>>a;
int b=0;
while (a>1){
b++;
a/=2;
}
nums.pb(b);
}
int dec=0;
while (nums.size()>1){
for (int i=0;i<nums.size();i++){
if (nums[i]<dec){
nums.erase(nums.begin()+i);
i--;
}
}
for (int i=0;i<nums.size()-1;i++){
if (nums[i]==dec){
if (nums[i+1]==dec){
nums[i]++;
nums.erase(nums.begin()+i+1);
}
else{
nums.erase(nums.begin()+i);
}
i--;
}
}
//cout<<nums<<"\n";
dec++;
}
cout<<(((lll)1)<<nums[0])<<"\n";
}
signed main() {
setup();
//usingfloats;
fasterthanlight;
//ineedtohash;
//testcases{
solve();
//}
}
详细
Test #1:
score: 100
Accepted
time: 0ms
memory: 18740kb
input:
5 4 2 2 1 8
output:
16
result:
ok single line: '16'
Test #2:
score: 0
Accepted
time: 0ms
memory: 18756kb
input:
1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...
output:
512
result:
ok single line: '512'
Test #3:
score: 0
Accepted
time: 2ms
memory: 18728kb
input:
1000 1267650600228229401496703205376 1267650600228229401496703205376 1267650600228229401496703205376 1267650600228229401496703205376 1267650600228229401496703205376 1267650600228229401496703205376 1267650600228229401496703205376 1267650600228229401496703205376 1267650600228229401496703205376 1267650...
output:
649037107316853453566312041152512
result:
ok single line: '649037107316853453566312041152512'
Test #4:
score: 0
Accepted
time: 0ms
memory: 18576kb
input:
1 1
output:
1
result:
ok single line: '1'
Test #5:
score: 0
Accepted
time: 0ms
memory: 18900kb
input:
1 2
output:
2
result:
ok single line: '2'
Test #6:
score: 0
Accepted
time: 0ms
memory: 18680kb
input:
1 4294967296
output:
4294967296
result:
ok single line: '4294967296'
Test #7:
score: 0
Accepted
time: 0ms
memory: 18648kb
input:
1 18446744073709551616
output:
18446744073709551616
result:
ok single line: '18446744073709551616'
Test #8:
score: 0
Accepted
time: 0ms
memory: 18628kb
input:
1 1267650600228229401496703205376
output:
1267650600228229401496703205376
result:
ok single line: '1267650600228229401496703205376'
Test #9:
score: 0
Accepted
time: 5ms
memory: 18644kb
input:
384 18014398509481984 72057594037927936 72057594037927936 72057594037927936 72057594037927936 72057594037927936 72057594037927936 72057594037927936 72057594037927936 72057594037927936 72057594037927936 72057594037927936 72057594037927936 72057594037927936 72057594037927936 72057594037927936 10737418...
output:
618970019642690137449562112
result:
ok single line: '618970019642690137449562112'
Test #10:
score: 0
Accepted
time: 0ms
memory: 18652kb
input:
430 36893488147419103232 128 2251799813685248 2251799813685248 2251799813685248 2251799813685248 2251799813685248 2251799813685248 2251799813685248 2251799813685248 2251799813685248 2251799813685248 2251799813685248 2251799813685248 2251799813685248 2251799813685248 2251799813685248 2251799813685248...
output:
158456325028528675187087900672
result:
ok single line: '158456325028528675187087900672'
Test #11:
score: 0
Accepted
time: 0ms
memory: 18700kb
input:
527 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 1099511627776 10...
output:
158456325028528675187087900672
result:
ok single line: '158456325028528675187087900672'
Test #12:
score: 0
Accepted
time: 0ms
memory: 18772kb
input:
809 1073741824 77371252455336267181195264 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 2097152 20...
output:
19807040628566084398385987584
result:
ok single line: '19807040628566084398385987584'
Test #13:
score: 0
Accepted
time: 0ms
memory: 18596kb
input:
435 618970019642690137449562112 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 128 128 128 128 128 128 128 128 128 128 128 128 128 ...
output:
316912650057057350374175801344
result:
ok single line: '316912650057057350374175801344'
Test #14:
score: 0
Accepted
time: 0ms
memory: 18560kb
input:
857 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 4398046511104 43...
output:
1267650600228229401496703205376
result:
ok single line: '1267650600228229401496703205376'
Test #15:
score: 0
Accepted
time: 0ms
memory: 18604kb
input:
765 17592186044416 2417851639229258349412352 2417851639229258349412352 2417851639229258349412352 2417851639229258349412352 2417851639229258349412352 2417851639229258349412352 2417851639229258349412352 2417851639229258349412352 2417851639229258349412352 2417851639229258349412352 241785163922925834941...
output:
1237940039285380274899124224
result:
ok single line: '1237940039285380274899124224'
Test #16:
score: 0
Accepted
time: 0ms
memory: 18692kb
input:
122 2097152 18014398509481984 18014398509481984 18014398509481984 18014398509481984 18014398509481984 18014398509481984 18014398509481984 18014398509481984 18014398509481984 18014398509481984 18014398509481984 18014398509481984 18014398509481984 18014398509481984 18014398509481984 18014398509481984 ...
output:
10141204801825835211973625643008
result:
ok single line: '10141204801825835211973625643008'
Test #17:
score: 0
Accepted
time: 0ms
memory: 18684kb
input:
491 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192 562949953421312 9444732965739290427392 9444732965739290427392 9444732965739290427392 9444732965739290427392 9444732965739290427392 94447329657392904273...
output:
1267650600228229401496703205376
result:
ok single line: '1267650600228229401496703205376'
Test #18:
score: 0
Accepted
time: 2ms
memory: 18804kb
input:
164 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 549755813888 5497558138...
output:
20282409603651670423947251286016
result:
ok single line: '20282409603651670423947251286016'