QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#696623#7901. Basic Substring Structureucup-team3646#WA 56ms4652kbC++2022.7kb2024-10-31 23:54:332024-10-31 23:54:35

Judging History

你现在查看的是最新测评结果

  • [2024-10-31 23:54:35]
  • 评测
  • 测评结果:WA
  • 用时:56ms
  • 内存:4652kb
  • [2024-10-31 23:54:33]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define elif else if
#define vi vector<int>
#define vll vector<ll>
#define vvi vector<vi>
#define pii pair<int,int>


#define repname(a, b, c, d, e, ...) e
#define rep(...)                    repname(__VA_ARGS__, rep3, rep2, rep1, rep0)(__VA_ARGS__)
#define rep0(x)                     for (int rep_counter = 0; rep_counter < (x); ++rep_counter)
#define rep1(i, x)                  for (int i = 0; i < (x); ++i)
#define rep2(i, l, r)               for (int i = (l); i < (r); ++i)
#define rep3(i, l, r, c)            for (int i = (l); i < (r); i += (c))





struct ScalarInput {
    template<class T>
    operator T(){
        T ret;
        cin >> ret;
        return ret;
    }
};
struct VectorInput {
    size_t n;
    VectorInput(size_t n): n(n) {}
    template<class T>
    operator vector<T>(){
        vector<T> ret(n);
        for(T &x : ret) cin >> x;
        return ret;
    }
};
ScalarInput input(){ return ScalarInput(); }
VectorInput input(size_t n){ return VectorInput(n); }

template<typename T>
void print(vector<T> a){
  for(int i=0;i<a.size();i++){
    cout<<a[i]<<" \n"[i+1==a.size()];
  }
}

template<class T>
void print(T x){
    cout << x << '\n';
}
 
template <class Head, class... Tail>
void print(Head&& head, Tail&&... tail){
  cout << head << ' ';
  print(forward<Tail>(tail)...);
}


#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif


#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;

    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    unsigned int umod() const { return _m; }

    unsigned int mul(unsigned int a, unsigned int b) const {

        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned long long y = x * _m;
        return (unsigned int)(z - y + (z < y ? _m : 0));
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b


        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <functional>
#include <vector>


#ifdef _MSC_VER
#include <intrin.h>
#endif

#if __cplusplus >= 202002L
#include <bit>
#endif

namespace atcoder {

namespace internal {

#if __cplusplus >= 202002L

using std::bit_ceil;

#else

unsigned int bit_ceil(unsigned int n) {
    unsigned int x = 1;
    while (x < (unsigned int)(n)) x *= 2;
    return x;
}

#endif

int countr_zero(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

constexpr int countr_zero_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

#if __cplusplus >= 201703L

template <class S, auto op, auto e> struct segtree {
    static_assert(std::is_convertible_v<decltype(op), std::function<S(S, S)>>,
                  "op must work as S(S, S)");
    static_assert(std::is_convertible_v<decltype(e), std::function<S()>>,
                  "e must work as S()");

#else

template <class S, S (*op)(S, S), S (*e)()> struct segtree {

#endif

  public:
    segtree() : segtree(0) {}
    explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
    explicit segtree(const std::vector<S>& v) : _n(int(v.size())) {
        size = (int)internal::bit_ceil((unsigned int)(_n));
        log = internal::countr_zero((unsigned int)size);
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) const {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S prod(int l, int r) const {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() const { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) const {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) const {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) const {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) const {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

}  // namespace atcoder

using namespace atcoder;
using mint=modint1000000007;

int B=10;
mint powB[201010];

using S=pair<mint,int>;
S op(S l,S r){
  mint val=l.first*powB[r.second]+r.first;
  return {val,l.second+r.second};
}

S e(){return {0,1};}

void solve(){
  int n;
  cin>>n;
  vi a(n);
  rep(i,n)cin>>a[i];
  vector<S>init(n);
  rep(i,n){
    init[i]={a[i],1};
  }

  ll init_ans=0;
  segtree<S,op,e>seg(init);
  vll diff(n,0);
  vector<map<int,ll>>mp(n);
  vector<ll>X0(n+1),X1(n+1);
  rep(l,n){
    int ok=l;
    int ng=n+1;
    while(abs(ok-ng)>1){
      int mid=(ok+ng)/2;
      int len=mid-l;
      if(seg.prod(l,mid)==seg.prod(0,len))ok=mid;
      else ng=mid;
    }
    int len=ok-l;
    int l1=0;
    int r1=len;
    int l2=l;
    int r2=l+len;
    init_ans+=len;

    if(l==0)continue;

    // todo : 高速化
    // ll tmp=len;
    // rep(j,l1,min(r1,l2)){
    //   diff[j]-=tmp;
    //   tmp--;
    // }
    // tmp=len;
    // rep(j,l2,r2){
    //   diff[j]-=tmp;
    //   tmp--;
    // }

    if(r1<=l2){
      X0[l1]+=-len;
      X1[l1]+=1;
      X1[r1]-=1;

      X0[l2]+=-len;
      X1[l2]+=1;
      X1[min(n,r2)]-=1;
    }

    else{
      X0[l1]+=-len;
      X1[l1]+=1;
      X1[r2]-=1;
      X0[l2]-=l2-l1;
    }



    if(l+len==n)continue;

    if(a[len]!=a[l+len]){
      // 増加する可能性があるやつ
      // a[len] を a[l + len] に置き換える
      seg.set(len,{a[l+len],1});
      {
        ok=l;
        ng=n+1;
        while(abs(ok-ng)>1){
          int mid=(ok+ng)/2;
          int len2=mid-l;
          if(seg.prod(l,mid)==seg.prod(0,len2))ok=mid;
          else ng=mid;
        }
        int len2=ok-l;
        assert(len!=len2);
        if(len2>len){
          mp[len][a[l+len]]+=len2-len;
        }
      }
      seg.set(len,{a[len],1});

      // a[l+len] を a[len] に置き換える

      seg.set(l+len,{a[len],1});
      {
        ok=l;
        ng=n+1;
        while(abs(ok-ng)>1){
          int mid=(ok+ng)/2;
          int len2=mid-l;
          if(seg.prod(l,mid)==seg.prod(0,len2))ok=mid;
          else ng=mid;
        }
        int len2=ok-l;

        assert(len!=len2);
        if(len2>len){
          mp[l+len][a[len]]+=len2-len;
        }
      }
      seg.set(l+len,{a[l+len],1});
    }
  }
  vll diff2(n,0);
  ll tmp0=0;
  ll tmp1=0;
  rep(i,n){
    tmp0+=X0[i]+tmp1;
    diff2[i]=tmp0;
    tmp1+=X1[i];
  }

  // assert(diff==diff2);

  vll ans(n);
  rep(i,n){
    ll mx=0;
    for(auto [key,val]:mp[i]){
      if(key!=a[i])mx=max(mx,val);
    }
    ans[i]=init_ans+diff2[i]+mx;
  }
  ll ANS=0;
  rep(i,n){
    ANS+=ans[i]^(i+1);
  }
  print(ANS);
}

int main(){
  ios::sync_with_stdio(false);
  cin.tie(nullptr);

  powB[0]=1;
  rep(i,1,201010)powB[i]=powB[i-1]*B;
  int T;
  cin>>T;
  rep(T)solve();
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 2ms
memory: 4288kb

input:

2
4
2 1 1 2
12
1 1 4 5 1 4 1 9 1 9 8 10

output:

15
217

result:

ok 2 lines

Test #2:

score: 0
Accepted
time: 27ms
memory: 4360kb

input:

10000
8
2 1 2 1 1 1 2 2
9
2 2 1 2 1 2 1 2 1
15
2 1 2 1 1 1 1 2 2 1 2 1 2 2 1
2
1 1
10
2 1 1 1 2 2 1 1 2 2
3
2 1 2
11
1 2 2 1 1 2 1 2 2 1 1
14
2 1 1 1 1 2 1 1 1 2 2 1 2 1
12
2 2 2 1 2 2 2 1 1 2 1 2
4
2 1 1 2
8
1 2 2 2 1 2 1 1
8
1 1 2 1 2 1 1 1
6
2 1 1 1 2 2
14
2 2 1 1 1 1 2 2 2 1 2 2 1 1
10
1 2 2 1 1...

output:

94
128
347
3
211
9
265
363
278
15
95
114
58
348
225
3
335
364
377
316
3
19
122
66
15
83
36
258
11
63
28
90
85
103
252
191
21
48
303
63
102
20
24
68
316
362
266
309
355
281
326
281
231
312
3
330
54
328
3
69
32
147
322
39
338
90
242
3
165
346
245
20
155
3
404
393
392
81
269
360
20
54
21
279
3
17
351
3...

result:

ok 10000 lines

Test #3:

score: 0
Accepted
time: 56ms
memory: 4456kb

input:

10000
17
1 2 2 2 2 2 2 2 1 1 2 2 1 2 1 2 2
17
2 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2
13
2 2 2 1 2 2 2 2 1 1 1 1 1
12
2 2 1 2 1 2 2 1 1 1 1 1
13
2 2 2 1 1 1 1 2 2 2 2 1 1
20
2 1 2 2 1 2 2 2 2 2 2 1 2 2 2 2 1 2 1 1
13
1 2 1 2 2 2 1 2 1 2 1 1 1
20
2 1 1 2 2 1 2 2 1 1 2 1 2 2 2 2 2 1 2 2
12
2 1 2 1 1 2 2 1 2...

output:

392
434
308
252
302
895
343
867
282
249
717
194
252
350
230
427
439
279
340
384
380
292
218
312
271
810
275
211
460
388
365
342
773
203
238
857
720
497
514
443
618
777
372
242
337
232
324
837
289
480
366
681
358
281
320
529
451
309
250
326
315
744
307
841
133
214
411
788
332
365
488
157
760
278
421
...

result:

ok 10000 lines

Test #4:

score: 0
Accepted
time: 56ms
memory: 4652kb

input:

10000
10
3 3 1 2 2 3 3 3 2 3
13
1 2 1 2 1 1 3 1 2 2 1 3 1
14
1 2 1 2 3 3 2 3 1 2 2 2 3 3
10
1 1 1 1 1 1 3 2 1 2
19
1 3 3 3 1 3 3 2 1 1 1 3 2 2 1 2 1 3 2
12
1 3 1 3 1 1 3 2 3 3 2 3
11
1 1 1 2 2 3 1 1 3 1 1
12
3 2 2 1 3 3 2 1 1 3 3 2
11
2 2 3 2 3 1 3 1 2 1 1
20
3 1 2 2 3 1 3 3 1 3 3 2 3 3 3 2 3 1 1 2
...

output:

191
285
325
207
420
281
215
280
151
754
365
199
94
418
318
377
414
285
373
362
111
358
332
117
185
326
89
404
229
386
307
285
421
232
321
329
506
372
386
364
153
582
313
356
152
129
424
366
382
280
363
370
273
294
388
389
807
388
459
280
114
310
211
368
150
166
793
211
793
393
102
427
399
408
584
38...

result:

ok 10000 lines

Test #5:

score: -100
Wrong Answer
time: 55ms
memory: 4372kb

input:

10000
14
9 9 13 6 3 8 7 10 5 9 14 2 12 5
15
9 12 2 2 8 4 2 11 4 4 8 3 8 13 15
19
5 7 1 2 9 2 16 9 15 8 19 9 3 18 8 8 1 12 6
14
9 8 2 11 7 2 12 5 14 14 10 5 7 2
11
4 4 2 9 9 11 10 3 3 2 2
14
8 2 9 10 10 11 6 9 12 5 5 4 9 2
20
4 5 3 13 15 18 12 6 2 8 11 12 6 10 14 14 10 14 13 12
14
11 9 7 5 12 12 5 3 ...

output:

307
362
380
107
97
137
380
108
135
299
312
265
99
362
379
361
332
377
129
367
97
380
97
107
363
107
132
367
97
88
363
314
100
382
354
349
383
95
359
306
340
133
382
106
395
361
374
105
292
385
360
359
365
381
378
107
374
123
357
104
365
319
379
102
364
89
107
374
128
101
360
115
363
107
106
116
92
3...

result:

wrong answer 18th lines differ - expected: '380', found: '377'