QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#688733 | #1268. Diamond Rush | wzj33300 | WA | 1026ms | 106632kb | C++14 | 7.5kb | 2024-10-30 13:13:55 | 2024-10-30 13:13:55 |
Judging History
answer
/**
* created : 30.10.2024 12:36:13
* author : wzj33300
*/
#include <bits/stdc++.h>
using namespace std;
#ifdef DEBUG
#include <algo/debug.h>
#else
#define debug(...) 42
#define assert(...) 42
#endif
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using db = long double; // or double, if TL is tight
using str = string; // yay python!
// pairs
using pi = pair<int, int>;
using pl = pair<ll, ll>;
using pd = pair<db, db>;
#define mp make_pair
#define fi first
#define se second
// ^ lol this makes everything look weird but I'll try it
template <class T>
using vc = vector<T>;
template <class T, size_t SZ>
using AR = array<T, SZ>;
using vi = vc<int>;
using vb = vc<bool>;
using vl = vc<ll>;
using vd = vc<db>;
using vs = vc<str>;
using vpi = vc<pi>;
using vpl = vc<pl>;
using vpd = vc<pd>;
// vectors
// oops size(x), rbegin(x), rend(x) need C++17
#define sz(x) int((x).size())
#define bg(x) begin(x)
#define all(x) bg(x), end(x)
#define rall(x) x.rbegin(), x.rend()
#define sor(x) sort(all(x))
#define rsz resize
#define ins insert
#define pb push_back
#define eb emplace_back
#define ft front()
#define bk back()
#define rep(i, n) for (int i = 0; i < (n); ++i)
#define rep1(i, n) for (int i = 1; i < (n); ++i)
#define rep1n(i, n) for (int i = 1; i <= (n); ++i)
#define repr(i, n) for (int i = (n) - 1; i >= 0; --i)
#define rep_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define lb lower_bound
#define ub upper_bound
template <class T>
int lwb(vc<T> &a, const T &b) {
return int(lb(all(a), b) - bg(a));
}
template <class T>
int upb(vc<T> &a, const T &b) {
return int(ub(all(a), b) - bg(a));
}
// const int MOD = 998244353; // 1e9+7;
const int Big = 1e9; // not too close to INT_MAX
const ll BIG = 1e18; // not too close to LLONG_MAX
const db PI = acos((db)-1);
const int dx[4]{1, 0, -1, 0}, dy[4]{0, 1, 0, -1}; // for every grid problem!!
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count());
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
int pct(int x) { return __builtin_popcount(x); }
int pct(u32 x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int pct(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <class T>
bool ckmin(T &a, const T &b) {
return b < a ? a = b, 1 : 0;
} // set a = min(a,b)
template <class T>
bool ckmax(T &a, const T &b) {
return a < b ? a = b, 1 : 0;
} // set a = max(a,b)
template <class T, class U>
T fstTrue(T lo, T hi, U f) {
++hi;
assert(lo <= hi); // assuming f is increasing
while (lo < hi) { // find first index such that f is true
T mid = lo + (hi - lo) / 2;
f(mid) ? hi = mid : lo = mid + 1;
}
return lo;
}
template <class T, class U>
T lstTrue(T lo, T hi, U f) {
--lo;
assert(lo <= hi); // assuming f is decreasing
while (lo < hi) { // find first index such that f is true
T mid = lo + (hi - lo + 1) / 2;
f(mid) ? lo = mid : hi = mid - 1;
}
return lo;
}
const int N = 400 * 400 * 25 * 2, mod = 1e9 + 7;
int sum[N], ls[N], rs[N], cnt, val[N], pw[400 * 400 + 1];
void update(int &rt, int l, int r, int x) {
++cnt;
ls[cnt] = ls[rt], rs[cnt] = rs[rt], sum[cnt] = sum[rt], val[cnt] = val[rt];
rt = cnt;
val[rt] += pw[x];
val[rt] %= mod;
if (l == r) {
sum[rt]++;
return;
}
int mid = l + r >> 1;
if (x <= mid)
update(ls[rt], l, mid, x);
else
update(rs[rt], mid + 1, r, x);
sum[rt] = sum[rs[rt]];
}
bool cmp(int x, int y, int l, int r) {
if (l == r) return sum[x] > sum[y];
int mid = l + r >> 1;
if (sum[rs[x]] != sum[rs[y]])
return cmp(rs[x], rs[y], mid + 1, r);
else
return cmp(ls[x], ls[y], l, mid);
}
using P = pair<int, int>;
P LS(P x) {
return P{ls[x.fi], ls[x.se]};
}
P RS(P x) {
return P{rs[x.fi], rs[x.se]};
}
int SUM(P x) {
return sum[x.fi] + sum[x.se];
}
int VAL(P x) {
return (val[x.fi] + val[x.se]) % mod;
}
bool cmp(P x, P y, int l, int r) {
if (l == r) return SUM(x) > SUM(y);
int mid = l + r >> 1;
if (SUM(RS(x)) != SUM(RS(y)))
return cmp(RS(x), RS(y), mid + 1, r);
else
return cmp(LS(x), LS(y), l, mid);
}
void _sol() {
int n, m;
cin >> n >> m;
pw[0] = 1;
for (int i = 1; i <= n * n; i++) {
pw[i] = 1ll * pw[i - 1] * n * n % mod;
}
vc<vi> a(n, vi(n));
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
cin >> a[i][j];
vc<vc<int>> f(n, vc<int>(n));
cnt = 0;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
if (i == 0 && j == 0) {
} else if (i == 0)
f[i][j] = f[i][j - 1];
else if (j == 0)
f[i][j] = f[i - 1][j];
else
f[i][j] = cmp(f[i - 1][j], f[i][j - 1], 1, n * n) ? f[i - 1][j] : f[i][j - 1];
update(f[i][j], 1, n * n, a[i][j]);
debug(val[f[i][j]]);
}
vc<vc<int>> g(n, vc<int>(n));
vc<vc<P>> pre(n, vc<P>(n)), suf(pre);
repr(i, n) repr(j, n) {
if (i == n - 1 && j == n - 1) {
} else if (i == n - 1)
g[i][j] = g[i][j + 1];
else if (j == n - 1)
g[i][j] = g[i + 1][j];
else
g[i][j] = cmp(g[i + 1][j], g[i][j + 1], 1, n * n) ? g[i + 1][j] : g[i][j + 1];
pre[i][j] = suf[i][j] = P{f[i][j], g[i][j]};
update(g[i][j], 1, n * n, a[i][j]);
}
debug(f, g);
for (int i = 0; i < n; i++) {
for (int j = 1; j < n; j++) {
pre[i][j] = cmp(pre[i][j], pre[i][j - 1], 1, n * n) ? pre[i][j] : pre[i][j - 1];
}
for (int j = n - 2; j >= 0; j--) {
suf[i][j] = cmp(suf[i][j], suf[i][j + 1], 1, n * n) ? suf[i][j] : suf[i][j + 1];
}
}
while (m--) {
int x1, x2, y1, y2;
cin >> x1 >> x2 >> y1 >> y2;
--x1, --x2, --y1, --y2;
P ans{0, 0};
// (x2, y1)
if (x2 < n - 1 && y1 > 0) {
ans = cmp(ans, pre[x2 + 1][y1 - 1], 1, n * n) ? ans : pre[x2 + 1][y1 - 1];
}
// (x1, y2)
if (x1 > 0 && y2 < n - 1) {
ans = cmp(ans, suf[x1 - 1][y2 + 1], 1, n * n) ? ans : suf[x1 - 1][y2 + 1];
}
cout << VAL(ans) << '\n';
}
}
// signed main() {
int main() {
// freopen(".in", "r",stdin);
// freopen(".out","w",stdout);
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin >> t;
while (t--) {
_sol();
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 5680kb
input:
1 2 2 2 3 1 4 1 1 2 2 2 2 1 1
output:
276 336
result:
ok 2 lines
Test #2:
score: -100
Wrong Answer
time: 1026ms
memory: 106632kb
input:
5 399 200000 1 5 3 2 3 5 5 4 3 5 2 5 1 2 4 1 3 1 1 5 5 5 5 2 2 2 3 3 5 3 5 3 1 2 3 2 3 3 4 3 5 3 1 3 4 5 2 1 4 4 5 4 5 3 3 2 4 2 3 5 1 2 4 4 3 2 3 5 4 4 1 2 3 5 5 2 1 5 5 1 4 1 2 5 3 4 5 3 5 5 5 3 2 3 1 2 1 1 2 5 1 4 1 3 4 1 1 3 5 3 2 2 3 1 3 1 3 1 5 1 4 1 1 2 5 1 4 3 1 3 2 5 4 2 3 5 5 2 5 3 1 5 3 1...
output:
194813602 252847413 112049605 786442261 637076689 874002116 847977388 315832020 49787073 908999151 315832020 275436782 325184130 254665348 289821999 787254973 512869760 376962705 214997724 650613944 348700420 500513792 315832020 256258871 746552375 889751393 315832020 666129653 661396441 315832020 6...
result:
wrong answer 1st lines differ - expected: '941207053', found: '194813602'