QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#676867#7177. Many Many CyclesmaspyWA 2ms7156kbC++2338.4kb2024-10-26 01:48:032024-10-26 01:48:03

Judging History

你现在查看的是最新测评结果

  • [2024-10-26 01:48:03]
  • 评测
  • 测评结果:WA
  • 用时:2ms
  • 内存:7156kb
  • [2024-10-26 01:48:03]
  • 提交

answer

#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "/home/maspy/compro/library/random/base.hpp"

u64 RNG_64() {
  static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
  x_ ^= x_ << 7;
  return x_ ^= x_ >> 9;
}

u64 RNG(u64 lim) { return RNG_64() % lim; }

ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "/home/maspy/compro/library/random/shuffle.hpp"

template <typename T>
void shuffle(vc<T>& A) {
  FOR(i, len(A)) {
    int j = RNG(0, i + 1);
    if (i != j) swap(A[i], A[j]);
  }
}
#line 2 "/home/maspy/compro/library/graph/tree.hpp"

#line 2 "/home/maspy/compro/library/graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  static constexpr bool is_directed = directed;
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

#ifdef FASTIO
  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }
#endif

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

#ifdef FASTIO
  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
#endif

  vc<int> new_idx;
  vc<bool> used_e;

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  // {G, es}
  // sum(deg(v)) の計算量になっていて、
  // 新しいグラフの n+m より大きい可能性があるので注意
  Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
    if (len(new_idx) != N) new_idx.assign(N, -1);
    int n = len(V);
    FOR(i, n) new_idx[V[i]] = i;
    Graph<T, directed> G(n);
    vc<int> history;
    FOR(i, n) {
      for (auto&& e: (*this)[V[i]]) {
        if (len(used_e) <= e.id) used_e.resize(e.id + 1);
        if (used_e[e.id]) continue;
        int a = e.frm, b = e.to;
        if (new_idx[a] != -1 && new_idx[b] != -1) {
          history.eb(e.id);
          used_e[e.id] = 1;
          int eid = (keep_eid ? e.id : -1);
          G.add(new_idx[a], new_idx[b], e.cost, eid);
        }
      }
    }
    FOR(i, n) new_idx[V[i]] = -1;
    for (auto&& eid: history) used_e[eid] = 0;
    G.build();
    return G;
  }

  Graph<T, true> to_directed_tree(int root = -1) {
    if (root == -1) root = 0;
    assert(!is_directed && prepared && M == N - 1);
    Graph<T, true> G1(N);
    vc<int> par(N, -1);
    auto dfs = [&](auto& dfs, int v) -> void {
      for (auto& e: (*this)[v]) {
        if (e.to == par[v]) continue;
        par[e.to] = v, dfs(dfs, e.to);
      }
    };
    dfs(dfs, root);
    for (auto& e: edges) {
      int a = e.frm, b = e.to;
      if (par[a] == b) swap(a, b);
      assert(par[b] == a);
      G1.add(a, b, e.cost);
    }
    G1.build();
    return G1;
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 4 "/home/maspy/compro/library/graph/tree.hpp"

// HLD euler tour をとっていろいろ。
template <typename GT>
struct Tree {
  using Graph_type = GT;
  GT &G;
  using WT = typename GT::cost_type;
  int N;
  vector<int> LID, RID, head, V, parent, VtoE;
  vc<int> depth;
  vc<WT> depth_weighted;

  Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); }

  void build(int r = 0, bool hld = 1) {
    if (r == -1) return; // build を遅延したいとき
    N = G.N;
    LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);
    V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);
    depth.assign(N, -1), depth_weighted.assign(N, 0);
    assert(G.is_prepared());
    int t1 = 0;
    dfs_sz(r, -1, hld);
    dfs_hld(r, t1);
  }

  void dfs_sz(int v, int p, bool hld) {
    auto &sz = RID;
    parent[v] = p;
    depth[v] = (p == -1 ? 0 : depth[p] + 1);
    sz[v] = 1;
    int l = G.indptr[v], r = G.indptr[v + 1];
    auto &csr = G.csr_edges;
    // 使う辺があれば先頭にする
    for (int i = r - 2; i >= l; --i) {
      if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
    }
    int hld_sz = 0;
    for (int i = l; i < r; ++i) {
      auto e = csr[i];
      if (depth[e.to] != -1) continue;
      depth_weighted[e.to] = depth_weighted[v] + e.cost;
      VtoE[e.to] = e.id;
      dfs_sz(e.to, v, hld);
      sz[v] += sz[e.to];
      if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
    }
  }

  void dfs_hld(int v, int &times) {
    LID[v] = times++;
    RID[v] += LID[v];
    V[LID[v]] = v;
    bool heavy = true;
    for (auto &&e: G[v]) {
      if (depth[e.to] <= depth[v]) continue;
      head[e.to] = (heavy ? head[v] : e.to);
      heavy = false;
      dfs_hld(e.to, times);
    }
  }

  vc<int> heavy_path_at(int v) {
    vc<int> P = {v};
    while (1) {
      int a = P.back();
      for (auto &&e: G[a]) {
        if (e.to != parent[a] && head[e.to] == v) {
          P.eb(e.to);
          break;
        }
      }
      if (P.back() == a) break;
    }
    return P;
  }

  int heavy_child(int v) {
    int k = LID[v] + 1;
    if (k == N) return -1;
    int w = V[k];
    return (parent[w] == v ? w : -1);
  }

  int e_to_v(int eid) {
    auto e = G.edges[eid];
    return (parent[e.frm] == e.to ? e.frm : e.to);
  }
  int v_to_e(int v) { return VtoE[v]; }
  int get_eid(int u, int v) {
    if (parent[u] != v) swap(u, v);
    assert(parent[u] == v);
    return VtoE[u];
  }

  int ELID(int v) { return 2 * LID[v] - depth[v]; }
  int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }

  // 目標地点へ進む個数が k
  int LA(int v, int k) {
    assert(k <= depth[v]);
    while (1) {
      int u = head[v];
      if (LID[v] - k >= LID[u]) return V[LID[v] - k];
      k -= LID[v] - LID[u] + 1;
      v = parent[u];
    }
  }
  int la(int u, int v) { return LA(u, v); }

  int LCA(int u, int v) {
    for (;; v = parent[head[v]]) {
      if (LID[u] > LID[v]) swap(u, v);
      if (head[u] == head[v]) return u;
    }
  }

  int meet(int a, int b, int c) { return LCA(a, b) ^ LCA(a, c) ^ LCA(b, c); }
  int lca(int u, int v) { return LCA(u, v); }

  int subtree_size(int v, int root = -1) {
    if (root == -1) return RID[v] - LID[v];
    if (v == root) return N;
    int x = jump(v, root, 1);
    if (in_subtree(v, x)) return RID[v] - LID[v];
    return N - RID[x] + LID[x];
  }

  int dist(int a, int b) {
    int c = LCA(a, b);
    return depth[a] + depth[b] - 2 * depth[c];
  }

  WT dist_weighted(int a, int b) {
    int c = LCA(a, b);
    return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
  }

  // a is in b
  bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }

  int jump(int a, int b, ll k) {
    if (k == 1) {
      if (a == b) return -1;
      return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
    }
    int c = LCA(a, b);
    int d_ac = depth[a] - depth[c];
    int d_bc = depth[b] - depth[c];
    if (k > d_ac + d_bc) return -1;
    if (k <= d_ac) return LA(a, k);
    return LA(b, d_ac + d_bc - k);
  }

  vc<int> collect_child(int v) {
    vc<int> res;
    for (auto &&e: G[v])
      if (e.to != parent[v]) res.eb(e.to);
    return res;
  }

  vc<int> collect_light(int v) {
    vc<int> res;
    bool skip = true;
    for (auto &&e: G[v])
      if (e.to != parent[v]) {
        if (!skip) res.eb(e.to);
        skip = false;
      }
    return res;
  }

  vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
    // [始点, 終点] の"閉"区間列。
    vc<pair<int, int>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        down.eb(LID[head[v]], LID[v]);
        v = parent[head[v]];
      } else {
        up.eb(LID[u], LID[head[u]]);
        u = parent[head[u]];
      }
    }
    if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
    elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
    reverse(all(down));
    up.insert(up.end(), all(down));
    return up;
  }

  // 辺の列の情報 (frm,to,str)
  // str = "heavy_up", "heavy_down", "light_up", "light_down"
  vc<tuple<int, int, string>> get_path_decomposition_detail(int u, int v) {
    vc<tuple<int, int, string>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        if (v != head[v]) down.eb(head[v], v, "heavy_down"), v = head[v];
        down.eb(parent[v], v, "light_down"), v = parent[v];
      } else {
        if (u != head[u]) up.eb(u, head[u], "heavy_up"), u = head[u];
        up.eb(u, parent[u], "light_up"), u = parent[u];
      }
    }
    if (LID[u] < LID[v]) down.eb(u, v, "heavy_down");
    elif (LID[v] < LID[u]) up.eb(u, v, "heavy_up");
    reverse(all(down));
    concat(up, down);
    return up;
  }

  vc<int> restore_path(int u, int v) {
    vc<int> P;
    for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
      if (a <= b) {
        FOR(i, a, b + 1) P.eb(V[i]);
      } else {
        FOR_R(i, b, a + 1) P.eb(V[i]);
      }
    }
    return P;
  }

  // path [a,b] と [c,d] の交わり. 空ならば {-1,-1}.
  // https://codeforces.com/problemset/problem/500/G
  pair<int, int> path_intersection(int a, int b, int c, int d) {
    int ab = lca(a, b), ac = lca(a, c), ad = lca(a, d);
    int bc = lca(b, c), bd = lca(b, d), cd = lca(c, d);
    int x = ab ^ ac ^ bc, y = ab ^ ad ^ bd; // meet(a,b,c), meet(a,b,d)
    if (x != y) return {x, y};
    int z = ac ^ ad ^ cd;
    if (x != z) x = -1;
    return {x, x};
  }
};
#line 2 "/home/maspy/compro/library/ds/unionfind/unionfind.hpp"

struct UnionFind {
  int n, n_comp;
  vc<int> dat; // par or (-size)
  UnionFind(int n = 0) { build(n); }

  void build(int m) {
    n = m, n_comp = m;
    dat.assign(n, -1);
  }

  void reset() { build(n); }

  int operator[](int x) {
    while (dat[x] >= 0) {
      int pp = dat[dat[x]];
      if (pp < 0) { return dat[x]; }
      x = dat[x] = pp;
    }
    return x;
  }

  ll size(int x) {
    x = (*this)[x];
    return -dat[x];
  }

  bool merge(int x, int y) {
    x = (*this)[x], y = (*this)[y];
    if (x == y) return false;
    if (-dat[x] < -dat[y]) swap(x, y);
    dat[x] += dat[y], dat[y] = x, n_comp--;
    return true;
  }

  vc<int> get_all() {
    vc<int> A(n);
    FOR(i, n) A[i] = (*this)[i];
    return A;
  }
};
#line 2 "/home/maspy/compro/library/ds/my_bitset.hpp"

// https://codeforces.com/contest/914/problem/F
// https://yukicoder.me/problems/no/142
// わずかに普通の bitset より遅いときもあるようだが,
// 固定長にしたくないときや slice 操作が必要なときに使う
struct My_Bitset {
  using T = My_Bitset;
  int N;
  vc<u64> dat;

  // x で埋める
  My_Bitset(int N = 0, int x = 0) : N(N) {
    assert(x == 0 || x == 1);
    u64 v = (x == 0 ? 0 : -1);
    dat.assign((N + 63) >> 6, v);
    if (N) dat.back() >>= (64 * len(dat) - N);
  }

  int size() { return N; }

  void resize(int size) {
    dat.resize((size + 63) >> 6);
    int remainingBits = size & 63;
    if (remainingBits != 0) {
      u64 mask = (u64(1) << remainingBits) - 1;
      dat.back() &= mask;
    }
    N = size;
  }

  static T from_string(string &S) {
    int N = len(S);
    T ANS(N);
    FOR(i, N) ANS[i] = (S[i] == '1');
    return ANS;
  }

  // thanks to chatgpt!
  class Proxy {
  public:
    Proxy(vc<u64> &d, int i) : dat(d), index(i) {}
    operator bool() const { return (dat[index >> 6] >> (index & 63)) & 1; }

    Proxy &operator=(u64 value) {
      dat[index >> 6] &= ~(u64(1) << (index & 63));
      dat[index >> 6] |= (value & 1) << (index & 63);
      return *this;
    }
    void flip() {
      dat[index >> 6] ^= (u64(1) << (index & 63)); // XOR to flip the bit
    }

  private:
    vc<u64> &dat;
    int index;
  };

  Proxy operator[](int i) { return Proxy(dat, i); }

  bool operator==(const T &p) {
    assert(N == p.N);
    FOR(i, len(dat)) if (dat[i] != p.dat[i]) return false;
    return true;
  }

  T &operator&=(const T &p) {
    assert(N == p.N);
    FOR(i, len(dat)) dat[i] &= p.dat[i];
    return *this;
  }
  T &operator|=(const T &p) {
    assert(N == p.N);
    FOR(i, len(dat)) dat[i] |= p.dat[i];
    return *this;
  }
  T &operator^=(const T &p) {
    assert(N == p.N);
    FOR(i, len(dat)) dat[i] ^= p.dat[i];
    return *this;
  }
  T operator&(const T &p) const { return T(*this) &= p; }
  T operator|(const T &p) const { return T(*this) |= p; }
  T operator^(const T &p) const { return T(*this) ^= p; }
  T operator~() const {
    T p = (*this);
    p.flip_range(0, N);
    return p;
  }

  int count() {
    int ans = 0;
    for (u64 val: dat) ans += popcnt(val);
    return ans;
  }

  int dot(T &p) {
    assert(N == p.N);
    int ans = 0;
    FOR(i, len(dat)) ans += popcnt(dat[i] & p.dat[i]);
    return ans;
  }

  int dot_mod_2(T &p) {
    assert(N == p.N);
    int ans = 0;
    FOR(i, len(dat)) ans ^= popcnt_mod_2(dat[i] & p.dat[i]);
    return ans;
  }

  int next(int i) {
    chmax(i, 0);
    if (i >= N) return N;
    int k = i >> 6;
    {
      u64 x = dat[k];
      int s = i & 63;
      x = (x >> s) << s;
      if (x) return (k << 6) | lowbit(x);
    }
    FOR(idx, k + 1, len(dat)) {
      if (dat[idx] == 0) continue;
      return (idx << 6) | lowbit(dat[idx]);
    }
    return N;
  }

  int prev(int i) {
    chmin(i, N - 1);
    if (i <= -1) return -1;
    int k = i >> 6;
    if ((i & 63) < 63) {
      u64 x = dat[k];
      x &= (u64(1) << ((i & 63) + 1)) - 1;
      if (x) return (k << 6) | topbit(x);
      --k;
    }
    FOR_R(idx, k + 1) {
      if (dat[idx] == 0) continue;
      return (idx << 6) | topbit(dat[idx]);
    }
    return -1;
  }

  My_Bitset range(int L, int R) {
    assert(L <= R);
    My_Bitset p(R - L);
    int rm = (R - L) & 63;
    FOR(rm) {
      p[R - L - 1] = bool((*this)[R - 1]);
      --R;
    }
    int n = (R - L) >> 6;
    int hi = L & 63;
    int lo = 64 - hi;
    int s = L >> 6;
    if (hi == 0) {
      FOR(i, n) { p.dat[i] ^= dat[s + i]; }
    } else {
      FOR(i, n) { p.dat[i] ^= (dat[s + i] >> hi) ^ (dat[s + i + 1] << lo); }
    }
    return p;
  }

  My_Bitset slice(int L, int R) { return range(L, R); }

  int count_range(int L, int R) {
    assert(L <= R);
    int cnt = 0;
    while ((L < R) && (L & 63)) cnt += (*this)[L++];
    while ((L < R) && (R & 63)) cnt += (*this)[--R];
    int l = L >> 6, r = R >> 6;
    FOR(i, l, r) cnt += popcnt(dat[i]);
    return cnt;
  }

  // [L,R) に p を代入
  void assign_to_range(int L, int R, My_Bitset &p) {
    assert(p.N == R - L);
    int a = 0, b = p.N;
    while (L < R && (L & 63)) { (*this)[L++] = bool(p[a++]); }
    while (L < R && (R & 63)) { (*this)[--R] = bool(p[--b]); }
    // p[a:b] を [L:R] に
    int l = L >> 6, r = R >> 6;
    int s = a >> 6, t = b >> t;
    int n = r - l;
    if (!(a & 63)) {
      FOR(i, n) dat[l + i] = p.dat[s + i];
    } else {
      int hi = a & 63;
      int lo = 64 - hi;
      FOR(i, n) dat[l + i] = (p.dat[s + i] >> hi) | (p.dat[1 + s + i] << lo);
    }
  }

  // [L,R) に p を xor
  void xor_to_range(int L, int R, My_Bitset &p) {
    assert(p.N == R - L);
    int a = 0, b = p.N;
    while (L < R && (L & 63)) {
      dat[L >> 6] ^= u64(p[a]) << (L & 63);
      ++a, ++L;
    }
    while (L < R && (R & 63)) {
      --b, --R;
      dat[R >> 6] ^= u64(p[b]) << (R & 63);
    }
    // p[a:b] を [L:R] に
    int l = L >> 6, r = R >> 6;
    int s = a >> 6, t = b >> t;
    int n = r - l;
    if (!(a & 63)) {
      FOR(i, n) dat[l + i] ^= p.dat[s + i];
    } else {
      int hi = a & 63;
      int lo = 64 - hi;
      FOR(i, n) dat[l + i] ^= (p.dat[s + i] >> hi) | (p.dat[1 + s + i] << lo);
    }
  }

  // 行列基本変形で使うやつ
  // p は [i:N) にしかないとして p を xor する
  void xor_suffix(int i, My_Bitset &p) {
    assert(N == p.N && 0 <= i && i < N);
    FOR(k, i / 64, len(dat)) { dat[k] ^= p.dat[k]; }
  }

  // [L,R) に p を and
  void and_to_range(int L, int R, My_Bitset &p) {
    assert(p.N == R - L);
    int a = 0, b = p.N;
    while (L < R && (L & 63)) {
      if (!p[a]) (*this)[L] = 0;
      a++, L++;
    }
    while (L < R && (R & 63)) {
      --b, --R;
      if (!p[b]) (*this)[R] = 0;
    }
    // p[a:b] を [L:R] に
    int l = L >> 6, r = R >> 6;
    int s = a >> 6, t = b >> t;
    int n = r - l;
    if (!(a & 63)) {
      FOR(i, n) dat[l + i] &= p.dat[s + i];
    } else {
      int hi = a & 63;
      int lo = 64 - hi;
      FOR(i, n) dat[l + i] &= (p.dat[s + i] >> hi) | (p.dat[1 + s + i] << lo);
    }
  }

  // [L,R) に p を or
  void or_to_range(int L, int R, My_Bitset &p) {
    assert(p.N == R - L);
    int a = 0, b = p.N;
    while (L < R && (L & 63)) {
      dat[L >> 6] |= u64(p[a]) << (L & 63);
      ++a, ++L;
    }
    while (L < R && (R & 63)) {
      --b, --R;
      dat[R >> 6] |= u64(p[b]) << (R & 63);
    }
    // p[a:b] を [L:R] に
    int l = L >> 6, r = R >> 6;
    int s = a >> 6, t = b >> t;
    int n = r - l;
    if (!(a & 63)) {
      FOR(i, n) dat[l + i] |= p.dat[s + i];
    } else {
      int hi = a & 63;
      int lo = 64 - hi;
      FOR(i, n) dat[l + i] |= (p.dat[s + i] >> hi) | (p.dat[1 + s + i] << lo);
    }
  }
  // 行列基本変形で使うやつ
  // p は [i:N) にしかないとして p を or する
  void or_suffix(int i, My_Bitset &p) {
    assert(N == p.N && 0 <= i && i < N);
    FOR(k, i / 64, len(dat)) { dat[k] |= p.dat[k]; }
  }

  // [L,R) を 1 に変更
  void set_range(int L, int R) {
    while (L < R && (L & 63)) { set(L++); }
    while (L < R && (R & 63)) { set(--R); }
    FOR(i, L >> 6, R >> 6) dat[i] = u64(-1);
  }

  // [L,R) を 1 に変更
  void reset_range(int L, int R) {
    while (L < R && (L & 63)) { reset(L++); }
    while (L < R && (R & 63)) { reset(--R); }
    FOR(i, L >> 6, R >> 6) dat[i] = u64(0);
  }

  // [L,R) を flip
  void flip_range(int L, int R) {
    while (L < R && (L & 63)) { flip(L++); }
    while (L < R && (R & 63)) { flip(--R); }
    FOR(i, L >> 6, R >> 6) dat[i] ^= u64(-1);
  }

  // bitset に仕様を合わせる
  void set(int i) { (*this)[i] = 1; }
  void reset(int i) { (*this)[i] = 0; }
  void flip(int i) { (*this)[i].flip(); }
  void set() {
    fill(all(dat), u64(-1));
    resize(N);
  }
  void reset() { fill(all(dat), 0); }
  void flip() {
    FOR(i, len(dat) - 1) { dat[i] = u64(-1) ^ dat[i]; }
    int i = len(dat) - 1;
    FOR(k, 64) {
      if (64 * i + k >= size()) break;
      flip(64 * i + k);
    }
  }
  bool any() {
    FOR(i, len(dat)) {
      if (dat[i]) return true;
    }
    return false;
  }

  bool ALL() {
    dat.resize((N + 63) >> 6);
    int r = N & 63;
    if (r != 0) {
      u64 mask = (u64(1) << r) - 1;
      if (dat.back() != mask) return 0;
    }
    for (int i = 0; i < N / 64; ++i)
      if (dat[i] != u64(-1)) return false;
    return true;
  }

  int _Find_first() { return next(0); }
  int _Find_next(int p) { return next(p + 1); }

  static string TO_STR[256];
  string to_string() const {
    if (TO_STR[0].empty()) precompute();
    string S;
    for (auto &x: dat) { FOR(i, 8) S += TO_STR[(x >> (8 * i) & 255)]; }
    S.resize(N);
    return S;
  }

  static void precompute() {
    FOR(s, 256) {
      string x;
      FOR(i, 8) x += '0' + (s >> i & 1);
      TO_STR[s] = x;
    }
  }
};
string My_Bitset::TO_STR[256];
#line 2 "/home/maspy/compro/library/ds/sum_over_bit_positions.hpp"

// https://qoj.ac/contest/1784/problem/9244
// sum bitset[i]*wt[i]
// T は 11bit sum がおさまれば ok
// (N=Q=100000:0.9 sec)
template <typename T, int MAXSIZE>
struct Sum_Over_Bit_Positions {
  int N;
  vc<T> base;
  static T table[MAXSIZE / 64 * 6 + 10][1 << 11];

  template <typename F>
  Sum_Over_Bit_Positions(int N, F f) : N(N) {
    base.resize(N);
    assert(0 <= N && N <= MAXSIZE);
    int NB = (N + 63) / 64;
    FOR(block, NB) {
      FOR(k, 6) {
        int b = 6 * block + k;
        FOR(i, 11) {
          int idx = 64 * block + 11 * k + i;
          T x = 0;
          if ((k < 5 || i < 9) && idx < N) x = base[idx] = f(idx);
          FOR(s, 1 << i) { table[b][s | 1 << i] = table[b][s] + x; }
        }
      }
    }
  }

  // bitset の [l,r) 部分
  template <typename SUM_TYPE>
  SUM_TYPE query(My_Bitset &x, int l, int r) {
    SUM_TYPE ANS = 0;
    while (l < r && (l & 63)) {
      if (x[l]) ANS += base[l];
      l++;
    }
    while (l < r && (r & 63)) {
      --r;
      if (x[r]) ANS += base[r];
    }
    if (l == r) return ANS;
    l /= 64, r /= 64;
    FOR(b, l, r) {
      u64 s = x.dat[b];
      ANS += table[b * 6 + 0][s >> 0 & 2047];
      ANS += table[b * 6 + 1][s >> 11 & 2047];
      ANS += table[b * 6 + 2][s >> 22 & 2047];
      ANS += table[b * 6 + 3][s >> 33 & 2047];
      ANS += table[b * 6 + 4][s >> 44 & 2047];
      ANS += table[b * 6 + 5][s >> 55 & 2047];
    }
    return ANS;
  }
};
template <typename T, int MAXSIZE>
T Sum_Over_Bit_Positions<T, MAXSIZE>::table[MAXSIZE / 64 * 6 + 10][1 << 11];
#line 8 "main.cpp"

using BS = My_Bitset;

void solve() {
  INT(N, M);
  UnionFind uf(N);
  vc<tuple<int, int, int>> dat1, dat2;
  FOR(M) {
    INT(a, b, c);
    --a, --b;
    if (uf.merge(a, b))
      dat1.eb(a, b, c);
    else
      dat2.eb(a, b, c);
  }
  Graph<int, 0> G(N + 1);
  for (auto& [a, b, c]: dat1) G.add(a, b, c);
  FOR(r, N) if (uf[r] == r) G.add(N, r);
  G.build();
  vc<BS> path(N + 1);
  path[N] = BS(M);

  {
    auto dfs = [&](auto& dfs, int v, int p) -> void {
      for (auto& e: G[v]) {
        if (e.to == p) continue;
        path[e.to] = path[v];
        if (v != N) path[e.to][e.id] = 1;
        dfs(dfs, e.to, v);
      }
    };
    dfs(dfs, N, -1);
  }
  vc<BS> cycle;
  ll ANS = 0;

  FOR(i, len(dat2)) {
    auto [a, b, c] = dat2[i];
    BS x = path[a] ^ path[b];
    x[len(dat1) + i] = 1;
    cycle.eb(x);
  }

  vi W;
  for (auto& [a, b, c]: dat1) W.eb(c);
  for (auto& [a, b, c]: dat2) W.eb(c);

  Sum_Over_Bit_Positions<ll, 10000> X(M, [&](int i) -> ll { return W[i]; });

  BS x(M);

  FOR(1000) {
    int i = RNG(0, len(cycle));
    x ^= cycle[i];
    ANS = gcd(ANS, X.query<ll>(x, 0, M));
  }
  print(ANS);
}

signed main() { solve(); }

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3784kb

input:

4 4
1 2 1
2 3 1
3 4 1
4 1 1

output:

4

result:

ok answer is '4'

Test #2:

score: 0
Accepted
time: 1ms
memory: 3776kb

input:

4 5
1 2 1
1 3 2
1 4 1
2 3 1
3 4 1

output:

4

result:

ok answer is '4'

Test #3:

score: 0
Accepted
time: 0ms
memory: 3952kb

input:

20 50
1 2 8
1 3 1
3 4 5
3 5 9
3 6 5
6 7 6
7 8 8
2 9 2
8 10 3
8 11 7
8 12 5
3 13 4
7 14 3
6 15 7
9 16 6
8 17 7
16 18 9
16 19 3
18 20 10
11 3 2
17 1 1
16 2 2
15 1 1
10 3 2
9 1 2
19 2 1
6 1 2
7 3 1
17 3 2
15 3 2
8 6 2
5 1 2
8 1 2
12 1 1
12 7 1
4 1 2
18 2 1
11 7 1
14 1 1
18 1 1
18 9 1
10 6 1
14 3 2
20 2...

output:

2

result:

ok answer is '2'

Test #4:

score: 0
Accepted
time: 0ms
memory: 3832kb

input:

20 50
1 2 18468
1 3 26501
3 4 15725
3 5 29359
3 6 24465
6 7 28146
7 8 16828
2 9 492
8 10 11943
8 11 5437
8 12 14605
3 13 154
7 14 12383
6 15 18717
9 16 19896
8 17 21727
16 18 11539
16 19 19913
18 20 26300
11 3 2
17 1 1
16 2 2
15 1 1
10 3 2
9 1 2
19 2 1
6 1 2
7 3 1
17 3 2
15 3 2
8 6 2
5 1 2
8 1 2
12 ...

output:

1

result:

ok answer is '1'

Test #5:

score: 0
Accepted
time: 0ms
memory: 5932kb

input:

100 150
1 2 184676335
1 3 191705725
1 4 293606963
1 5 57078146
2 6 168279962
6 7 29961943
5 8 54392392
5 9 39020154
5 10 123837422
7 11 197199896
3 12 217274772
7 13 18709913
6 14 263007036
11 15 287053812
3 16 303347674
9 17 151417712
17 18 68705548
15 19 326652758
12 20 128598724
2 21 275290779
11...

output:

3

result:

ok answer is '3'

Test #6:

score: 0
Accepted
time: 1ms
memory: 4156kb

input:

100 130
1 2 184676335
1 3 191705725
1 4 293606963
1 5 57078146
2 6 168279962
6 7 29961943
5 8 54392392
5 9 39020154
5 10 123837422
7 11 197199896
3 12 217274772
7 13 18709913
6 14 263007036
11 15 287053812
3 16 303347674
9 17 151417712
17 18 68705548
15 19 326652758
12 20 128598724
2 21 275290779
11...

output:

7

result:

ok answer is '7'

Test #7:

score: 0
Accepted
time: 1ms
memory: 4088kb

input:

100 200
1 2 184676335
1 3 191705725
1 4 293606963
1 5 57078146
2 6 168279962
6 7 29961943
5 8 54392392
5 9 39020154
5 10 123837422
7 11 197199896
3 12 217274772
7 13 18709913
6 14 263007036
11 15 287053812
3 16 303347674
9 17 151417712
17 18 68705548
15 19 326652758
12 20 128598724
2 21 275290779
11...

output:

4

result:

ok answer is '4'

Test #8:

score: 0
Accepted
time: 1ms
memory: 4164kb

input:

100 190
1 2 184676335
1 3 191705725
1 4 293606963
1 5 57078146
2 6 168279962
6 7 29961943
5 8 54392392
5 9 39020154
5 10 123837422
7 11 197199896
3 12 217274772
7 13 18709913
6 14 263007036
11 15 287053812
3 16 303347674
9 17 151417712
17 18 68705548
15 19 326652758
12 20 128598724
2 21 275290779
11...

output:

2

result:

ok answer is '2'

Test #9:

score: 0
Accepted
time: 2ms
memory: 7156kb

input:

1000 1500
1 2 184676335
1 3 191705725
1 4 293606963
1 5 57078146
2 6 168279962
6 7 29961943
5 8 54392392
5 9 39020154
5 10 123837422
7 11 197199896
3 12 217274772
7 13 18709913
6 14 263007036
11 15 287053812
3 16 303347674
9 17 151417712
17 18 68705548
15 19 326652758
12 20 128598724
2 21 275290779
...

output:

3

result:

ok answer is '3'

Test #10:

score: -100
Wrong Answer
time: 1ms
memory: 6472kb

input:

1000 1500
1 2 184676335
1 3 191705725
1 4 293606963
1 5 57078146
2 6 168279962
6 7 29961943
5 8 54392392
5 9 39020154
5 10 123837422
7 11 197199896
3 12 217274772
7 13 18709913
6 14 263007036
11 15 287053812
3 16 303347674
9 17 151417712
17 18 68705548
15 19 326652758
12 20 128598724
2 21 275290779
...

output:

3

result:

wrong answer expected '1', found '3'