QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#670500#9493. 路径计数cmk66623 3341ms56052kbC++2336.3kb2024-10-23 21:56:092024-10-23 21:56:10

Judging History

你现在查看的是最新测评结果

  • [2024-10-23 21:56:10]
  • 评测
  • 测评结果:23
  • 用时:3341ms
  • 内存:56052kb
  • [2024-10-23 21:56:09]
  • 提交

answer

/*  _              _     _                                             _       __      __      __   
   / \     _   _  | |_  | |__     ___    _ __   _    ___   _ __ ___   | | __  / /_    / /_    / /_  
  / _ \   | | | | | __| | '_ \   / _ \  | '__| (_)  / __| | '_ ` _ \  | |/ / | '_ \  | '_ \  | '_ \ 
 / ___ \  | |_| | | |_  | | | | | (_) | | |     _  | (__  | | | | | | |   <  | (_) | | (_) | | (_) |
/_/   \_\  \__,_|  \__| |_| |_|  \___/  |_|    (_)  \___| |_| |_| |_| |_|\_\  \___/   \___/   \___/ 
[Created Time:       2024-10-23 21:03:31]
[Last Modified Time: 2024-10-23 21:56:01] */
#pragma GCC optimize("Ofast", "unroll-loops")
#include<bits/stdc++.h>
#ifdef LOCAL
#include"debug.h"
#else
#define D(...) ((void)0)
#endif
using namespace std; using ll = long long;
#define For(i, j, k) for ( int i = (j) ; i <= (k) ; i++ )
#define Fol(i, j, k) for ( int i = (j) ; i >= (k) ; i-- )
namespace FastIO
{
#define USE_FastIO
// ------------------------------
// #define DISABLE_MMAP
// ------------------------------
#if ( defined(LOCAL) || defined(_WIN32) ) && !defined(DISABLE_MMAP)
#define DISABLE_MMAP
#endif
#ifdef LOCAL
	inline void _chk_i() {}
	inline char _gc_nochk() { return getchar(); }
	inline char _gc() { return getchar(); }
	inline void _chk_o() {}
	inline void _pc_nochk(char c) { putchar(c); }
	inline void _pc(char c) { putchar(c); }
	template < int n > inline void _pnc_nochk(const char *c) { for ( int i = 0 ; i < n ; i++ ) putchar(c[i]); }
#else
#ifdef DISABLE_MMAP
	inline constexpr int _READ_SIZE = 1 << 18; inline static char _read_buffer[_READ_SIZE + 40], *_read_ptr = nullptr, *_read_ptr_end = nullptr; static inline bool _eof = false;
	inline void _chk_i() { if ( __builtin_expect(!_eof, true) && __builtin_expect(_read_ptr_end - _read_ptr < 40, false) ) { int sz = _read_ptr_end - _read_ptr; if ( sz ) memcpy(_read_buffer, _read_ptr, sz); char *beg = _read_buffer + sz; _read_ptr = _read_buffer, _read_ptr_end = beg + fread(beg, 1, _READ_SIZE, stdin); if ( __builtin_expect(_read_ptr_end != beg + _READ_SIZE, false) ) _eof = true, *_read_ptr_end = EOF; } }
	inline char _gc_nochk() { return __builtin_expect(_eof && _read_ptr == _read_ptr_end, false) ? EOF : *_read_ptr++; }
	inline char _gc() { _chk_i(); return _gc_nochk(); }
#else
#include<sys/mman.h>
#include<sys/stat.h>
	inline static char *_read_ptr = (char *)mmap(nullptr, [] { struct stat s; return fstat(0, &s), s.st_size; } (), 1, 2, 0, 0);
	inline void _chk_i() {}
	inline char _gc_nochk() { return *_read_ptr++; }
	inline char _gc() { return *_read_ptr++; }
#endif
	inline constexpr int _WRITE_SIZE = 1 << 18; inline static char _write_buffer[_WRITE_SIZE + 40], *_write_ptr = _write_buffer;
	inline void _chk_o() { if ( __builtin_expect(_write_ptr - _write_buffer > _WRITE_SIZE, false) ) fwrite(_write_buffer, 1, _write_ptr - _write_buffer, stdout), _write_ptr = _write_buffer; }
	inline void _pc_nochk(char c) { *_write_ptr++ = c; }
	inline void _pc(char c) { *_write_ptr++ = c, _chk_o(); }
	template < int n > inline void _pnc_nochk(const char *c) { memcpy(_write_ptr, c, n), _write_ptr += n; }
	inline struct _auto_flush { inline ~_auto_flush() { fwrite(_write_buffer, 1, _write_ptr - _write_buffer, stdout); } } _auto_flush;
#endif
#define println println_ // don't use C++23 std::println
	template < class T > inline constexpr bool _is_signed = numeric_limits < T >::is_signed;
	template < class T > inline constexpr bool _is_unsigned = numeric_limits < T >::is_integer && !_is_signed < T >;
#if __SIZEOF_LONG__ == 64
	template <> inline constexpr bool _is_signed < __int128 > = true;
	template <> inline constexpr bool _is_unsigned < __uint128_t > = true;
#endif
	inline bool _isgraph(char c) { return c >= 33; }
	inline bool _isdigit(char c) { return 48 <= c && c <= 57; } // or faster, remove c <= 57
	constexpr struct _table {
#ifndef LOCAL
	int i[65536];
#endif
	char o[40000]; constexpr _table() :
#ifndef LOCAL
	i{},
#endif
	o{} {
#ifndef LOCAL
	for ( int x = 0 ; x < 65536 ; x++ ) i[x] = -1; for ( int x = 0 ; x <= 9 ; x++ ) for ( int y = 0 ; y <= 9 ; y++ ) i[x + y * 256 + 12336] = x * 10 + y;
#endif
	for ( int x = 0 ; x < 10000 ; x++ ) for ( int y = 3, z = x ; ~y ; y-- ) o[x * 4 + y] = z % 10 + 48, z /= 10; } } _table;
	template < class T, int digit > inline constexpr T _pw10 = 10 * _pw10 < T, digit - 1 >;
	template < class T > inline constexpr T _pw10 < T, 0 > = 1;
	inline void read(char &c) { do c = _gc(); while ( !_isgraph(c) ); }
	inline void read_cstr(char *s) { char c = _gc(); while ( !_isgraph(c) ) c = _gc(); while ( _isgraph(c) ) *s++ = c, c = _gc(); *s = 0; }
	inline void read(string &s) { char c = _gc(); s.clear(); while ( !_isgraph(c) ) c = _gc(); while ( _isgraph(c) ) s.push_back(c), c = _gc(); }
	template < class T, bool neg >
#ifndef LOCAL
	__attribute__((no_sanitize("undefined")))
#endif
	inline void _read_int_suf(T &x) { _chk_i(); char c; while
#ifndef LOCAL
	( ~_table.i[*reinterpret_cast < unsigned short *& >(_read_ptr)] ) if constexpr ( neg ) x = x * 100 - _table.i[*reinterpret_cast < unsigned short *& >(_read_ptr)++]; else x = x * 100 + _table.i[*reinterpret_cast < unsigned short *& >(_read_ptr)++]; if
#endif
	( _isdigit(c = _gc_nochk()) ) if constexpr ( neg ) x = x * 10 - ( c & 15 ); else x = x * 10 + ( c & 15 ); }
	template < class T, enable_if_t < _is_signed < T >, int > = 0 > inline void read(T &x) { char c; while ( !_isdigit(c = _gc()) ) if ( c == 45 ) { _read_int_suf < T, true >(x = -( _gc_nochk() & 15 )); return; } _read_int_suf < T, false >(x = c & 15); }
	template < class T, enable_if_t < _is_unsigned < T >, int > = 0 > inline void read(T &x) { char c; while ( !_isdigit(c = _gc()) ); _read_int_suf < T, false >(x = c & 15); }
	inline void write(bool x) { _pc(x | 48); }
	inline void write(char c) { _pc(c); }
	inline void write_cstr(const char *s) { while ( *s ) _pc(*s++); }
	inline void write(const string &s) { for ( char c : s ) _pc(c); }
	template < class T, bool neg, int digit > inline void _write_int_suf(T x) { if constexpr ( digit == 4 ) _pnc_nochk < 4 >(_table.o + ( neg ? -x : x ) * 4); else _write_int_suf < T, neg, digit / 2 >(x / _pw10 < T, digit / 2 >), _write_int_suf < T, neg, digit / 2 >(x % _pw10 < T, digit / 2 >); }
	template < class T, bool neg, int digit > inline void _write_int_pre(T x) { if constexpr ( digit <= 4 ) if ( digit >= 3 && ( neg ? x <= -100 : x >= 100 ) ) if ( digit >= 4 && ( neg ? x <= -1000 : x >= 1000 ) ) _pnc_nochk < 4 >(_table.o + ( neg ? -x : x ) * 4); else _pnc_nochk < 3 >(_table.o + ( neg ? -x : x ) * 4 + 1); else if ( digit >= 2 && ( neg ? x <= -10 : x >= 10 ) ) _pnc_nochk < 2 >(_table.o + ( neg ? -x : x ) * 4 + 2); else _pc_nochk(( neg ? -x : x ) | 48); else { constexpr int cur = 1 << __lg(digit - 1); if ( neg ? x <= -_pw10 < T, cur > : x >= _pw10 < T, cur > ) _write_int_pre < T, neg, digit - cur >(x / _pw10 < T, cur >), _write_int_suf < T, neg, cur >(x % _pw10 < T, cur >); else _write_int_pre < T, neg, cur >(x); } }
	template < class T, enable_if_t < _is_signed < T >, int > = 0 > inline void write(T x) { if ( x >= 0 ) _write_int_pre < T, false, numeric_limits < T >::digits10 + 1 >(x); else _pc_nochk(45), _write_int_pre < T, true, numeric_limits < T >::digits10 + 1 >(x); _chk_o(); }
	template < class T, enable_if_t < _is_unsigned < T >, int > = 0 > inline void write(T x) { _write_int_pre < T, false, numeric_limits < T >::digits10 + 1 >(x), _chk_o(); }
	template < size_t N, class ...T > inline void _read_tuple(tuple < T... > &x) { read(get < N >(x)); if constexpr ( N + 1 != sizeof...(T) ) _read_tuple < N + 1, T... >(x); }
	template < size_t N, class ...T > inline void _write_tuple(const tuple < T... > &x) { write(get < N >(x)); if constexpr ( N + 1 != sizeof...(T) ) _pc(32), _write_tuple < N + 1, T... >(x); }
	template < class ...T > inline void read(tuple < T... > &x) { _read_tuple < 0, T... >(x); }
	template < class ...T > inline void write(const tuple < T... > &x) { _write_tuple < 0, T... >(x); }
	template < class T1, class T2 > inline void read(pair < T1, T2 > &x) { read(x.first), read(x.second); }
	template < class T1, class T2 > inline void write(const pair < T1, T2 > &x) { write(x.first), _pc(32), write(x.second); }
	template < class T > inline auto read(T &x) -> decltype(x.read(), void()) { x.read(); }
	template < class T > inline auto write(const T &x) -> decltype(x.write(), void()) { x.write(); }
	template < class T1, class ...T2 > inline void read(T1 &x, T2 &...y) { read(x), read(y...); }
	template < class ...T > inline void read_cstr(char *x, T *...y) { read_cstr(x), read_cstr(y...); }
	template < class T1, class ...T2 > inline void write(const T1 &x, const T2 &...y) { write(x), write(y...); }
	template < class ...T > inline void write_cstr(const char *x, const T *...y) { write_cstr(x), write_cstr(y...); }
	template < class T > inline void print(const T &x) { write(x); }
	inline void print_cstr(const char *x) { write_cstr(x); }
	template < class T1, class ...T2 > inline void print(const T1 &x, const T2 &...y) { write(x), _pc(32), print(y...); }
	template < class ...T > inline void print_cstr(const char *x, const T *...y) { write_cstr(x), _pc(32), print_cstr(y...); }
	inline void println() { _pc(10); }
	inline void println_cstr() { _pc(10); }
	template < class ...T > inline void println(const T &...x) { print(x...), _pc(10); }
	template < class ...T > inline void println_cstr(const T *...x) { print_cstr(x...), _pc(10); }
}	using FastIO::read, FastIO::read_cstr, FastIO::write, FastIO::write_cstr, FastIO::println, FastIO::println_cstr;
template < auto P_ > class MontgomeryModInt
{
	using S = decltype(P_); static_assert(is_same_v < S, int > || is_same_v < S, long > || is_same_v < S, long long >);
	static_assert(P_ & 1 && 0 < P_ && P_ < ( (S)1 << ( sizeof(S) * 8 - 2 ) ));
	using U = conditional_t < is_same_v < S, int >, unsigned, unsigned long long >; using D = conditional_t < is_same_v < S, int >, unsigned long long, __uint128_t >;
	inline constexpr static U uinv(U x) { U y = x; for ( int i = is_same_v < S, int > ? 4 : 5 ; i-- ; ) y *= 2 - x * y; return y; }
	constexpr static U P = P_, P2 = P << 1, R = -uinv(P), R2 = -(D)P % P; static_assert(P * R == -1);
	inline constexpr static U reduce(D x) { return ( x + (U)x * R * (D)P ) >> ( sizeof(U) * 8 ); }
	inline constexpr MontgomeryModInt(U x, int) : v(x) {} U v;
public:
	inline constexpr static S mod() { return P; }
	inline constexpr MontgomeryModInt() : v(0) {}
	inline constexpr MontgomeryModInt(const MontgomeryModInt &x) : v(x.v) {}
	template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 > inline constexpr MontgomeryModInt(T x) : v(reduce((D)R2 * ( numeric_limits < T >::is_signed && x < 0 ? ( ( x + P < 0 ) && ( x %= P ), x + P ) : ( ( sizeof(T) > sizeof(U) && x >= (T)1 << sizeof(U) ) && ( x %= P ), x ) ))) {}
	inline constexpr S val()const { U x = reduce(v); return ( x - P ) >> ( sizeof(U) * 8 - 1 ) ? x : x - P; }
	template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 > explicit inline constexpr operator T()const { return val(); }
	inline constexpr friend bool operator==(const MontgomeryModInt &x, const MontgomeryModInt &y) { return x.val() == y.val(); }
	inline constexpr friend bool operator!=(const MontgomeryModInt &x, const MontgomeryModInt &y) { return x.val() != y.val(); }
	inline constexpr MontgomeryModInt &operator=(const MontgomeryModInt &x) & { v = x.v; return *this; }
	inline constexpr MontgomeryModInt &operator++() & { return *this += 1; }
	inline constexpr MontgomeryModInt operator++(int) & { MontgomeryModInt x = *this; *this += 1; return x; }
	inline constexpr MontgomeryModInt &operator--() & { return *this -= 1; }
	inline constexpr MontgomeryModInt operator--(int) & { MontgomeryModInt x = *this; *this -= 1; return x; }
	inline constexpr MontgomeryModInt operator-()const { return MontgomeryModInt(v ? P2 - v : 0, 0); }
	inline constexpr MontgomeryModInt &operator+=(const MontgomeryModInt &x) & { v += x.v, ( v - P2 ) >> ( sizeof(U) * 8 - 1 ) || ( v -= P2 ); return *this; }
	inline constexpr MontgomeryModInt &operator-=(const MontgomeryModInt &x) & { v -= x.v, v >> ( sizeof(U) * 8 - 1 ) && ( v += P2 ); return *this; }
	inline constexpr MontgomeryModInt &operator*=(const MontgomeryModInt &x) & { v = reduce((D)v * x.v); return *this; }
	inline constexpr MontgomeryModInt &operator/=(const MontgomeryModInt &x) & { return *this *= x.inv(); }
	inline constexpr friend MontgomeryModInt operator+(MontgomeryModInt x, const MontgomeryModInt &y) { return x += y; }
	inline constexpr friend MontgomeryModInt operator-(MontgomeryModInt x, const MontgomeryModInt &y) { return x -= y; }
	inline constexpr friend MontgomeryModInt operator*(MontgomeryModInt x, const MontgomeryModInt &y) { return x *= y; }
	inline constexpr friend MontgomeryModInt operator/(MontgomeryModInt x, const MontgomeryModInt &y) { return x /= y; }
	template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 > inline constexpr MontgomeryModInt qpow(T y)const { MontgomeryModInt x = *this, z = 1; while ( y ) { if ( y & 1 ) z *= x; if ( y >>= 1 ) x *= x; } return z; }
	template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 > inline constexpr friend MontgomeryModInt qpow(const MontgomeryModInt &x, T y) { return x.qpow(y); }
	inline constexpr MontgomeryModInt inv()const { return qpow(P - 2); }
	inline constexpr friend MontgomeryModInt inv(const MontgomeryModInt &x) { return x.inv(); }
	inline friend istream &operator>>(istream &is, MontgomeryModInt &x) { S y; is >> y, x = y; return is; }
	inline friend ostream &operator<<(ostream &os, const MontgomeryModInt &x) { return os << x.val(); }
#ifdef USE_FastIO
	inline void read() & { S x; ::read(x), *this = x; }
	inline void write()const { ::write(val()); }
#endif
};	using MI = MontgomeryModInt < 998244353 >; // 1000000007 1145141919810000037
template < class MI > struct VALUES
{
	static vector < MI > inv, fac, ifac;
	inline static void extend(int n)
	{
		if ( __builtin_expect((int)inv.size() > n, true) ) return;
		if ( __builtin_expect(inv.empty(), false) ) inv = { 0, 1 }, fac = ifac = { 1, 1 };
		int m = (int)inv.size(); inv.resize(n + 1), fac.resize(n + 1), ifac.resize(n + 1);
		for ( int i = m ; i != n + 1 ; i++ ) inv[i] = MI::mod() / i * -inv[MI::mod() % i],
								  fac[i] = fac[i - 1] * i, ifac[i] = ifac[i - 1] * inv[i];
	}
};	template < class MI > vector < MI > VALUES < MI >::inv;
	template < class MI > vector < MI > VALUES < MI >::fac;
	template < class MI > vector < MI > VALUES < MI >::ifac;
// int VALUES_INIT = [] { return VALUES < MI >::extend(1000000), 0; } ();
// inline MI  fac(int x) { return x >= 0 ? VALUES < MI >::extend(max(1, x)), VALUES < MI >:: fac[x] : 0; }
// inline MI ifac(int x) { return x >= 0 ? VALUES < MI >::extend(max(1, x)), VALUES < MI >::ifac[x] : 0; }
// inline MI c(int x, int y) { return x >= y && y >= 0 ? fac(x) * ifac(y) * ifac(x - y) : 0; }
template < class IT1, class IT2 > inline void linear_inv(int n, IT1 p, IT2 q)
{
	*q = *p; for ( int i = 1 ; i != n ; i++ ) q[i] = q[i - 1] * p[i]; q[n - 1] = q[n - 1].inv();
	for ( int i = n - 1 ; i ; i-- ) { MI x = q[i]; q[i] *= q[i - 1], q[i - 1] = x * p[i]; }
}
template < class MI > inline pair < bool, MI > cipolla(const MI &s)
{
	if ( !s ) return make_pair(true, 0);
	if ( MI::mod() == 2 ) return make_pair(true, 1);
	if ( s.qpow(( MI::mod() - 1 ) >> 1) != 1 ) return make_pair(false, 0);
	static mt19937 rnd(chrono::system_clock::now().time_since_epoch().count());
	uniform_int_distribution < decltype(MI::mod()) > uid(1, MI::mod() - 1);
	MI x, y; do x = uid(rnd), y = x * x - s; while ( y.qpow(( MI::mod() - 1 ) >> 1) == 1 );
	constexpr auto mul = [](pair < MI, MI > &f, const pair < MI, MI > &g, const MI &h) {
		f = make_pair(f.first * g.first  + f.second * g.second * h,
					  f.first * g.second + f.second * g.first);
	}; pair < MI, MI > f(x, 1), g(1, 0); auto z = ( MI::mod() + 1 ) >> 1;
	while ( z ) { if ( z & 1 ) mul(g, f, y); if ( z >>= 1 ) mul(f, f, y); }
	return make_pair(true, min(g.first.val(), MI::mod() - g.first.val()));
}
template < class MI > class Polynomial : public vector < MI >
{
	constexpr static MI G = 3; constexpr static int L = [] { int x = MI::mod() - 1, y = 0; while ( ~x & 1 ) x >>= 1, y++; return y; } ();
	constexpr static array < MI, L + 1 > ivn = [] { array < MI, L + 1 > a{}; for ( int i = 0 ; i != L + 1 ; i++ ) a[i] = MI(1 << i).inv(); return a; } ();
	inline static pair < const Polynomial *, const Polynomial * > get_rt(int n) { static Polynomial rt = { 1 }, irt = { 1 }; if ( rt.size() < n ) { int i = rt.size(); for ( rt.resize(n), irt.resize(n) ; i != n ; i <<= 1 ) { MI w = G.qpow(MI::mod() / ( i << 2 )), iw = w.inv(); for ( int j = 0 ; j != i ; j++ ) rt[j + i] = rt[j] * w, irt[j + i] = irt[j] * iw; } } return make_pair(&rt, &irt); }
	inline constexpr static int get_len(int x) { return x < 3 ? x : 2 << __lg(x - 1); }
	inline void dif(int n) { const Polynomial &rt = *get_rt(n).first; for ( int i = n ; i >>= 1 ; ) for ( int j = 0, k = 0 ; j != n ; j += i << 1, k++ ) for ( int p = j, q = j + i ; p != j + i ; p++, q++ ) { MI x = (*this)[p], y = (*this)[q] * rt[k]; (*this)[p] = x + y, (*this)[q] = x - y; } }
	inline void dit(int n) { const Polynomial &irt = *get_rt(n).second; for ( int i = 1 ; i != n ; i <<= 1 ) for ( int j = 0, k = 0 ; j != n ; j += i << 1, k++ ) for ( int p = j, q = j + i ; p != j + i ; p++, q++ ) { MI x = (*this)[p], y = (*this)[q]; (*this)[p] = x + y, (*this)[q] = ( x - y ) * irt[k]; } MI x = ivn[__lg(n)]; for ( int i = 0 ; i != n ; i++ ) (*this)[i] *= x; }
	inline void dif_rhalf(int n) { const Polynomial &rt = *get_rt(n).first; for ( int i = n, m = 1 ; i >>= 1 ; m <<= 1 ) for ( int j = 0, k = 0 ; j != n ; j += i << 1, k++ ) for ( int p = j, q = j + i ; p != j + i ; p++, q++ ) { MI x = (*this)[p], y = (*this)[q] * rt[m + k]; (*this)[p] = x + y, (*this)[q] = x - y; } }
	inline void dit_rhalf(int n) { const Polynomial &irt = *get_rt(n).second; for ( int i = 1, m = n ; m >>= 1 ; i <<= 1 ) for ( int j = 0, k = 0 ; j != n ; j += i << 1, k++ ) for ( int p = j, q = j + i ; p != j + i ; p++, q++ ) { MI x = (*this)[p], y = (*this)[q]; (*this)[p] = x + y, (*this)[q] = ( x - y ) * irt[m + k]; } MI x = ivn[__lg(n)]; for ( int i = 0 ; i != n ; i++ ) (*this)[i] *= x; }
	inline void dot(const Polynomial &x, int n) { for ( int i = 0 ; i != n ; i++ ) (*this)[i] *= x[i]; }
	inline void deriv(int n, const typename vector < MI >::iterator &x)const { for ( int i = 1 ; i != n ; i++ ) x[i - 1] = (*this)[i] * i; x[n - 1] = 0; }
	inline void integ(int n, const typename vector < MI >::iterator &x)const { VALUES < MI >::extend(n); for ( int i = n - 1 ; i ; i-- ) x[i] = (*this)[i - 1] * VALUES < MI >::inv[i]; x[0] = 0; }
	inline static Polynomial mul_big(Polynomial x, Polynomial y) { int n = x.size() + y.size() - 1, m = get_len(n); x.resize(m), x.dif(m), y.resize(m), y.dif(m), x.dot(y, m), x.dit(m), x.resize(n); return x; }
	inline Polynomial pow_one(int n, int k)const { if ( !k ) { Polynomial x(n); x[0] = 1; return x; } return k == 1 ? modxk(n) : ( modxk(n).ln() * k ).exp(); }
	inline Polynomial pow_non_zero(int n, int k_mod_p, int k_mod_phi_p)const { return (*this)[0] == 1 ? pow_one(n, k_mod_p) : ( *this * (*this)[0].inv() ).pow_one(n, k_mod_p) * (*this)[0].qpow(k_mod_phi_p); }
	inline Polynomial sqrt_non_zero(const MI &t)const { constexpr MI c = -MI(2).inv(); int n = get_len(size()); Polynomial x(size()), y(size()), z(n), u(n), v(n); x[0] = v[0] = t, y[0] = t.inv(); for ( int i = 1, j = 2, k ; i != size() ; j <<= 1 ) { k = j == n ? size() : j, v.dot(v, i), v.dit(i); for ( int l = 0 ; l != i ; l++ ) v[i + l] = v[l] - (*this)[l]; for ( int l = i ; l != k ; l++ ) v[l] -= (*this)[l]; fill(v.begin(), v.begin() + i, 0), v.dif(j), copy(y.begin(), y.begin() + i, u.begin()), u.dif(j), v.dot(u, j), v.dit(j); for ( int l = i ; l != k ; l++ ) x[l] = v[l] * c; if ( j == n ) i = size(); else for ( copy(x.begin(), x.begin() + j, z.begin()), z.dif(j), copy(z.begin(), z.begin() + j, v.begin()), z.dot(u, j), z.dit(j), fill(z.begin(), z.begin() + i, 0), z.dif(j), z.dot(u, j), z.dit(j) ; i != j ; i++ ) y[i] = -z[i]; } return x; }
	struct eval_tree
	{
		int n, m, s; vector < Polynomial > t;
		inline eval_tree(int o, const Polynomial &x) : n(max(2, get_len(o))), m(__lg(n)), s(x.size()), t(m + 1, Polynomial(n << 1)) { Polynomial z(n); for ( int i = 0 ; i != n ; i++ ) { MI w = i < s ? x[i] : 0; t[0][i << 1] = 1 - w, t[0][i << 1 | 1] = -1 - w; } for ( int d = 0, i = 2 ; d != m ; d++, i <<= 1 ) for ( int j = 0 ; j != ( n << 1 ) ; j += i << 1 ) { for ( int k = 0 ; k != i ; k++ ) z[k] = t[d][j + k] * t[d][j + i + k]; if ( d != m - 1 ) copy(z.begin(), z.begin() + i, t[d + 1].begin() + j), z.dit(i), z[0] -= 2, z.dif_rhalf(i), copy(z.begin(), z.begin() + i, t[d + 1].begin() + j + i); else z.dit(i), copy(z.begin(), z.begin() + i, t[d + 1].begin() + j), --t[d + 1][j], ++t[d + 1][i]; } }
		inline Polynomial eval(Polynomial x)const { if ( x.size() > n ) x = x.divmod(t[m]).second; Polynomial y(s), z(n), u = t[m]; x.resize(n << 1), rotate(x.begin(), x.end() - 1, x.end()), x.dif(n << 1), reverse(u.begin(), u.begin() + 1 + n), u = u.modxk(n).inv(); reverse(u.begin(), u.end()), u.resize(n << 1), u.dif(n << 1), u.dot(x, n << 1); for ( int d = m, i = n ; d-- ; i >>= 1 ) for ( int j = 0 ; j != ( n << 1 ) ; j += i << 1 ) { copy(u.begin() + i + j, u.begin() + ( i << 1 ) + j, z.begin()), z.dit_rhalf(i), z.dif(i), copy(z.begin(), z.begin() + i, u.begin() + i + j); for ( int k = 0 ; k != i ; k++ ) { MI w = u[j + k] - u[i + j + k]; u[j + k] = w * t[d][i + j + k], u[i + j + k] = w * t[d][j + k]; } } MI w = ivn[m + 1]; for ( int i = 0 ; i != s ; i++ ) y[i] = ( u[i << 1] - u[i << 1 | 1] ) * w; return y; }
		inline Polynomial inter(const Polynomial &y)const { Polynomial x = t[m], z(n), u(n << 1), v(n << 1); x.erase(x.begin(), x.begin() + n - s), x = eval(x.deriv()), linear_inv(s, x.begin(), v.begin()); for ( int i = 0 ; i != n ; i++ ) u[i << 1] = u[i << 1 | 1] = i < s ? y[i] * v[i] : 0; for ( int d = 0, i = 2 ; d != m ; d++, i <<= 1, swap(u, v) ) for ( int j = 0 ; j != ( n << 1 ) ; j += i << 1 ) { for ( int k = 0 ; k != i ; k++ ) z[k] = t[d][j + k] * u[j + i + k] + u[j + k] * t[d][j + i + k]; if ( d != m - 1 ) copy(z.begin(), z.begin() + i, v.begin() + j), z.dit(i), z.dif_rhalf(i), copy(z.begin(), z.begin() + i, v.begin() + j + i); else z.dit(i), copy(z.begin(), z.begin() + i, v.begin()); } return Polynomial(u.begin() + n - s, u.begin() + n); }
	};
	inline static void shift_poi_non_zero(const Polynomial &y, const MI &k, int m, typename vector < MI >::iterator &z) { int n = y.size(), o = get_len(n + m); Polynomial u(o), v(o), w(n + m), x(n + m); MI p = k - n; VALUES < MI >::extend(max(1, n - 1)); for ( int i = 0 ; i != n ; i++ ) u[i] = ( ( n - i ) & 1 ? y[i] : -y[i] ) * VALUES < MI >::ifac[i] * VALUES < MI >::ifac[n - 1 - i]; u.dif(o); w[0] = 1; for ( int i = 1 ; i != n + m ; i++ ) w[i] = w[i - 1] * ++p; linear_inv(n + m, w.begin(), x.begin()); for ( int i = 0 ; i != n + m - 1 ; i++ ) v[i] = w[i] * x[i + 1]; v.dif(o), u.dot(v, o), u.dit(o); for ( int i = 0 ; i != m ; i++ ) *z++ = u[i + n - 1] * w[i + n] * x[i]; }
	inline void comp_work(Polynomial &x, int o, int m, int n, const MI &w)const { if ( n == 1 ) { x.resize(m + 1), VALUES < MI >::extend(m + m - 1); MI p = VALUES < MI >::ifac[m - 1]; for ( int i = 0 ; i != m + 1 ; i++ ) x[m - i] = p * VALUES < MI >::fac[m - 1 + i] * VALUES < MI >::ifac[i], p *= w; x *= *this, x.erase(x.begin(), x.begin() + m), x.resize(o); return; } Polynomial y(o << 2), z(o << 1), u(o << 1); for ( int i = 0 ; i != m ; i++ ) copy(x.begin() + i * n, x.begin() + i * n + n, y.begin() + ( ( i * n ) << 1 )); y[o << 1] = 1, y.dif(o << 2); for ( int i = 0 ; i != ( o << 2 ) ; i += 2 ) z[i >> 1] = y[i] * y[i + 1]; z.dit(o << 1), --z[0]; for ( int i = 1 ; i != ( m << 1 ) ; i++ ) copy(z.begin() + i * n, z.begin() + i * n + ( n >> 1 ), z.begin() + i * ( n >> 1 )); z.resize(o), comp_work(z, o, m << 1, n >> 1, w); for ( int i = 0 ; i != ( m << 1 ) ; i++ ) copy(z.begin() + i * ( n >> 1 ), z.begin() + i * ( n >> 1 ) + ( n >> 1 ), u.begin() + i * n); u.dif(o << 1), x.resize(o << 2); for ( int i = 0 ; i != ( o << 2 ) ; i += 2 ) x[i] = y[i + 1] * u[i >> 1], x[i + 1] = y[i] * u[i >> 1]; x.dit(o << 2); for ( int i = 0 ; i != m ; i++ ) copy(x.begin() + ( ( ( i + m ) * n ) << 1 ), x.begin() + ( ( ( i + m ) * n ) << 1 ) + n, x.begin() + i * n); x.resize(o); }
public:
	using vector < MI >::vector, vector < MI >::begin, vector < MI >::end;
	inline int size()const { return (int)vector < MI >::size(); }
	inline Polynomial mulxk(int k)const { Polynomial x = *this; x.insert(x.begin(), k, 0); return x; }
	inline Polynomial divxk(int k)const { return Polynomial(begin() + min(k, size()), end()); }
	inline Polynomial modxk(int k)const { return Polynomial(begin(), begin() + min(k, size())); }
	inline void remove0() & { while ( size() && !vector < MI >::back() ) vector < MI >::pop_back(); }
	inline Polynomial mul_xi(const MI &x)const { Polynomial z = *this; if ( size() ) { MI y = 1; for ( int i = 1 ; i != size() ; i++ ) z[i] *= y *= x; } return z; }
	inline MI operator()(const MI &x)const { MI y = vector < MI >::back(); for ( int i = size() - 2 ; ~i ; i-- ) y = y * x + (*this)[i]; return y; }
	inline Polynomial operator-()const { Polynomial x = *this; for ( MI &i : x ) i = -i; return x; }
	inline Polynomial &operator+=(const MI &x) & { if ( !size() ) return *this = Polynomial(1,  x); (*this)[0] += x; return *this; }
	inline Polynomial &operator-=(const MI &x) & { if ( !size() ) return *this = Polynomial(1, -x); (*this)[0] -= x; return *this; }
	inline Polynomial &operator*=(const MI &x) & { for ( MI &i : *this ) i *= x; return *this; }
	inline Polynomial &operator/=(const MI &x) & { return *this *= x.inv(); }
	inline Polynomial &operator+=(const Polynomial &x) & { if ( size() < x.size() ) vector < MI >::resize(x.size()); for ( int i = 0 ; i != x.size() ; i++ ) (*this)[i] += x[i]; return *this; }
	inline Polynomial &operator-=(const Polynomial &x) & { if ( size() < x.size() ) vector < MI >::resize(x.size()); for ( int i = 0 ; i != x.size() ; i++ ) (*this)[i] -= x[i]; return *this; }
	inline Polynomial &operator*=(const Polynomial &x) & { return *this = *this * x; }
	inline friend Polynomial operator+(Polynomial x, const MI &y) { return x += y; }
	inline friend Polynomial operator-(Polynomial x, const MI &y) { return x -= y; }
	inline friend Polynomial operator*(Polynomial x, const MI &y) { return x *= y; }
	inline friend Polynomial operator+(const MI &x, Polynomial y) { return y += x; }
	inline friend Polynomial operator-(const MI &x, Polynomial y) { return -y + x; }
	inline friend Polynomial operator*(const MI &x, Polynomial y) { return y *= x; }
	inline friend Polynomial operator/(Polynomial x, const MI &y) { return x /= y; }
	inline friend Polynomial operator+(Polynomial x, const Polynomial &y) { return x += y; }
	inline friend Polynomial operator-(Polynomial x, const Polynomial &y) { return x -= y; }
	inline friend Polynomial operator*(const Polynomial &x, const Polynomial &y) { if ( min(x.size(), y.size()) > 8 && max(x.size(), y.size()) > 128 ) return mul_big(x, y); Polynomial z(max(0, x.size() + y.size() - 1)); for ( int i = 0 ; i != x.size() ; i++ ) for ( int j = 0 ; j != y.size() ; j++ ) z[i + j] += x[i] * y[j]; return z; }
	inline Polynomial deriv()const { Polynomial x(size()); deriv(size(), x.begin()), x.pop_back(); return x; }
	inline Polynomial integ()const { Polynomial x(size() + 1); integ(size() + 1, x.begin()); return x; }
	inline Polynomial inv()const { int n = get_len(size()); Polynomial x(size()), y(n), z(n); x[0] = (*this)[0].inv(); for ( int i = 1, j = 2, k ; i != size() ; j <<= 1 ) for ( k = j == n ? size() : j, copy(begin(), begin() + k, y.begin()), y.dif(j), copy(x.begin(), x.begin() + i, z.begin()), z.dif(j), y.dot(z, j), y.dit(j), fill(y.begin(), y.begin() + i, 0), y.dif(j), y.dot(z, j), y.dit(j) ; i != k ; i++ ) x[i] = -y[i]; return x; }
	inline Polynomial exp()const { if ( size() == 1 ) return Polynomial(1, 1); int n = get_len(size()); Polynomial x(size()), y(size()), z(n), u(n), v(n); x[0] = y[0] = u[0] = u[1] = 1; for ( int i = 1, j = 2, k ; i != size() ; j <<= 1 ) { k = j == n ? size() : j, deriv(i, z.begin()), z.dif(i), z.dot(u, i), z.dit(i), z[i - 1] = -z[i - 1], x.deriv(i, z.begin() + i); for ( int l = 0 ; l != i - 1 ; l++ ) z[i + l] -= z[l]; fill(z.begin(), z.begin() + i - 1, 0), z.dif(j), copy(y.begin(), y.begin() + i, v.begin()), v.dif(j), z.dot(v, j); z.dit(j), z.integ(j, z.begin()), fill(z.begin(), z.begin() + i, 0); for ( int l = i ; l != k ; l++ ) z[l] -= (*this)[l]; z.dif(j), z.dot(u, j), z.dit(j); for ( int l = i ; l != k ; l++ ) x[l] = -z[l]; if ( j == n ) i = size(); else { copy(x.begin(), x.begin() + j, u.begin()), u.dif(j + j); for ( copy(u.begin(), u.begin() + j, z.begin()), z.dot(v, j), z.dit(j), fill(z.begin(), z.begin() + i, 0), z.dif(j), z.dot(v, j), z.dit(j) ; i != j ; i++ ) y[i] = -z[i]; } } return x; }
	inline Polynomial ln()const { Polynomial x(size()); deriv(size(), x.begin()), x *= inv(), x.resize(size()), x.integ(size(), x.begin()); return x; }
	inline Polynomial pow(int k_chkmn_sz, int k_mod_p, int k_mod_phi_p)const { if ( !k_chkmn_sz ) { Polynomial x(size()); x[0] = 1; return x; } int i = 0; while ( i != size() && !(*this)[i] ) i++; return (long long)i * k_chkmn_sz >= size() ? Polynomial(size()) : i ? divxk(i).pow_non_zero(size() - i * k_chkmn_sz, k_mod_p, k_mod_phi_p).mulxk(i * k_chkmn_sz) : pow_non_zero(size(), k_mod_p, k_mod_phi_p); }
	template < class T > inline Polynomial pow(T x)const { return pow(x < size() ? x : size(), x % MI::mod(), x % ( MI::mod() - 1 )); }
	inline pair < bool, Polynomial > sqrt()const { int i = 0; while ( i != size() && !(*this)[i] ) i++; if ( i == size() ) return make_pair(true, Polynomial(size())); if ( i & 1 ) return make_pair(false, Polynomial()); auto [o, t] = cipolla((*this)[i]); if ( !o ) return make_pair(false, Polynomial()); if ( i ) { Polynomial x(begin() + i, end()); x.insert(x.end(), i >> 1, 0); return make_pair(true, x.sqrt_non_zero(t).mulxk(i >> 1)); } return make_pair(true, sqrt_non_zero(t)); }
	inline Polynomial div(const Polynomial &x)const { if ( x.size() > size() ) return Polynomial(); int n = size() - x.size() + 1; Polynomial y(n), z(n); reverse_copy(begin() + x.size() - 1, end(), y.begin()), reverse_copy(x.begin() + max(0, x.size() - n), x.end(), z.begin()), y = ( y * z.inv() ).modxk(n), reverse(y.begin(), y.end()); return y; }
	inline pair < Polynomial, Polynomial > divmod(const Polynomial &x)const { if ( x.size() > size() ) return make_pair(Polynomial(), *this); Polynomial y = div(x); return make_pair(y, modxk(x.size() - 1) - ( x.modxk(x.size() - 1) * y.modxk(x.size() - 1) ).modxk(x.size() - 1)); }
	inline Polynomial eval(const Polynomial &x)const { return eval_tree(max(size(), x.size()), x).eval(*this); }
	inline static Polynomial inter(const Polynomial &x, const Polynomial &y) { return eval_tree(x.size(), x).inter(y); }
	inline Polynomial chirpz_eval(int m, const MI &x)const { Polynomial y(m); if ( !x ) { y[0] = (*this)(1); if ( m > 1 ) fill(y.begin() + 1, y.end(), (*this)[0]); return y; } int n = size() + m - 1, o = get_len(n); Polynomial u(o), v(n), z = *this; MI w = x.inv(), p = u[0] = 1, q = v[0] = 1; for ( int i = 1 ; i != n ; i++ ) u[i] = u[i - 1] * p, v[i] = v[i - 1] * q, p *= x, q *= w; z.dot(v, size()), reverse(z.begin(), z.end()), z.resize(o), z.dif(o), u.dif(o), z.dot(u, o), z.dit(o), z = Polynomial(z.begin() + size() - 1, z.begin() + size() - 1 + m), z.dot(v, m); return z; }
	inline static Polynomial chirpz_inter(const MI &x, const Polynomial &y) { int n = y.size(), m = get_len(n << 1); if ( n < 2 ) return y; Polynomial u(( n << 1 ) - 1), v(n), z(m), r(n), s(m); MI w = x.inv(), p = u[0] = z[0] = 1, q = v[0] = 1; for ( int i = 1 ; i != n ; i++ ) u[i] = u[i - 1] * p, v[i] = v[i - 1] * q, p *= x, q *= w, z[i] = z[i - 1] * ( 1 - p ); q = z[n - 1] * ( 1 - p * x ); for ( int i = n ; i != ( n << 1 ) - 1 ; i++ ) u[i] = u[i - 1] * p, p *= x; linear_inv(n, z.begin(), r.begin()); for ( int i = 0 ; i != n ; i++ ) z[i] = ( i & 1 ? -y[i] : y[i] ) * r[i] * r[n - 1 - i] * u[n - 1 - i] * v[i] * v[n - 1]; reverse(z.begin(), z.begin() + n), z.dif(m), copy(u.begin(), u.end(), s.begin()), s.dif(m), z.dot(s, m), z.dit(m), z.erase(z.begin(), z.begin() + n - 1), z.dot(v, n), z[n + 1] = 0, z.resize(m), z.dif(m), s[0] = 1; for ( int i = 1 ; i != n ; i++ ) s[i] = ( i & 1 ? -q : q ) * r[i] * r[n - i] * u[i]; fill(s.begin() + n, s.end(), 0), s.dif(m), z.dot(s, m), z.dit(m), z.resize(n), reverse(z.begin(), z.end()); return z; }
	inline Polynomial shift(const MI &k) & { if ( !k ) return *this; int n = size(), m = get_len(n << 1); Polynomial y(m), z(m); VALUES < MI >::extend(max(1, n - 1)); for ( int i = 0 ; i != n ; i++ ) y[i] = (*this)[i] * VALUES < MI >::fac[i]; y.dif(m), z[n - 1] = 1; for ( int i = n - 1 ; i ; i-- ) z[i - 1] = z[i] * k * VALUES < MI >::inv[n - i]; z.dif(m), y.dot(z, m), y.dit(m), y = Polynomial(y.begin() + n - 1, y.begin() + ( n << 1 ) - 1); for ( int i = 0 ; i != n ; i++ ) y[i] *= VALUES < MI >::ifac[i]; return y; }
	inline static Polynomial shift_poi(const Polynomial &y, MI k, int m) { Polynomial x(m); auto z = x.begin(); int p = k.val(), o = MI::mod() - p; if ( o <= m ) shift_poi_non_zero(y, k, o, z), m -= o, k = p = 0; if ( m && p < y.size() ) o = min(y.size(), p + m), copy(y.begin() + p, y.begin() + o, z), z += o - p, m -= o - p, k = y.size(); if ( m ) shift_poi_non_zero(y, k, m, z); return x; }
	inline Polynomial comp(const Polynomial &x)const { int n = get_len(size()); Polynomial y(n); for ( int i = 0 ; i != x.size() ; i++ ) y[i] = -x[i]; comp_work(y, n, 1, n, x[0]), y.resize(size()); return y; }
	inline Polynomial comp_inv()const { constexpr MI c = MI(2).inv(); int n = get_len(size() << 1), m, o, j = 1; const Polynomial &irt = *get_rt(n).second; Polynomial x(n), y(n), u(n << 1), v(n << 1); MI w = (*this)[1].inv(), p = -1; for ( int i = 1 ; i != size() ; i++ ) p *= w, x[i] = (*this)[i] * p; y[0] = 1; for ( int i = size() ; i != 1 ; i = o, j <<= 1 ) { o = ( i + 1 ) >> 1, m = get_len(( i * j ) << 2), fill(u.begin(), u.begin() + m, 0), fill(v.begin(), v.begin() + m, 0); for ( int k = 0 ; k != j ; k++ ) copy(x.begin() + i * k, x.begin() + i * k + i, u.begin() + ( ( i * k ) << 1 )), copy(y.begin() + i * k, y.begin() + i * k + i, v.begin() + ( ( i * k ) << 1 )); u[( i * j ) << 1] = 1, u.dif(m), v.dif(m), x.resize(m >> 1), y.resize(m >> 1); for ( int k = 0 ; k != m ; k += 2 ) x[k >> 1] = u[k] * u[k + 1]; if ( i & 1 ) for ( int k = 0 ; k != m ; k += 2 ) y[k >> 1] = ( u[k + 1] * v[k] + u[k] * v[k + 1] ) * c; else for ( int k = 0 ; k != m ; k += 2 ) y[k >> 1] = ( u[k + 1] * v[k] - u[k] * v[k + 1] ) * irt[k >> 1] * c; x.dit(m >> 1), y.dit(m >> 1); if ( ( ( i * j ) << 2 ) == m ) --x[0]; for ( int k = 1 ; k != ( j << 1 ) ; k++ ) copy(x.begin() + i * k, x.begin() + i * k + o, x.begin() + o * k), copy(y.begin() + i * k, y.begin() + i * k + o, y.begin() + o * k); } y.resize(j * o), reverse(y.begin(), y.end()), m = size(), y.resize(m), VALUES < MI >::extend(m - 1); for ( int i = 1 ; i != m ; i++ ) y[i] *= ( m - 1 ) * VALUES < MI >::inv[i]; reverse(y.begin(), y.end()), y = y.pow_one(m - 1, ( -VALUES < MI >::inv[m - 1] ).val()) * w, y.insert(y.begin(), 0); return y; }
#ifdef USE_FastIO
	inline void read() & { for ( MI &i : *this ) ::read(i); }
	inline void write()const { for ( int i = 0 ; i != size() ; i++ ) { if ( i ) ::write(' '); ::write((*this)[i]); } }
#endif
};	using Poly = Polynomial < MI >;
int _, n, m, p; MI a[200009], b[200009], c[200009], d[200009], e[200009], f[200009];
Poly res;
struct M
{
	Poly a[3][3];
	inline M operator*(const M &o)const
	{
		M z;
		For(i, 0, 2) For(k, 0, 2) if ( a[i][k].size() ) For(j, 0, 2) z.a[i][j] += a[i][k] * o.a[k][j];
		return z;
	}
	inline M &operator*=(const M &o) { return *this = *this * o; }
}	bs;
inline M calc(int l, int r)
{
	if ( l != r ) { int md = ( l + r ) >> 1; return calc(md + 1, r) * calc(l, md); }
	M z; z.a[0][0] = { 1, -c[l] }, z.a[1][0] = { 0, 0, -a[l] * d[l + 1] },
	z.a[0][1] = { 1 }, z.a[0][2] = { f[l] }, z.a[2][2] = { 0, a[l] }; return z;
}
inline pair < Poly, Poly > calc2(int l, int r)
{
	if ( l == r ) return pair(Poly({ 1, b[l] }), Poly({ e[l] }));
	int md = ( l + r ) >> 1; auto [lf, lg] = calc2(l, md); auto [rf, rg] = calc2(md + 1, r);
	return pair(lf * rf, lg.mulxk(r - md) + lf * rg);
}
int main()
{
	read(_, n, m, p);
	For(i, 0, m - 1) read(a[i]);
	For(i, 0, n - 1) read(b[i]);
	For(i, 0, m    ) read(c[i]);
	For(i, 1, m    ) read(d[i]);
	For(i, 0, n    ) read(e[i]);
	For(i, 0, m    ) read(f[i]);
	bs.a[0][0] = { 1 }, bs *= calc(0, m), res = bs.a[0][2] * calc2(0, n).second * bs.a[0][0].inv();
	return println(res[n]), 0;
}
// 想上GM捏 想上GM捏 想上GM捏 想上GM捏 想上GM捏
// 伊娜可爱捏 伊娜贴贴捏

详细

Subtask #1:

score: 0
Wrong Answer

Test #1:

score: 3
Accepted
time: 53ms
memory: 6808kb

input:

1 5000 5000 998244353
121811167 379924090 361631583 174189813 559424693 889647308 193102812 469875055 32237660 96186933 624360154 404866088 859165067 748410791 926700198 368632735 476560636 798138824 17883437 712872225 448819400 33122704 572152288 627010263 336722521 775918346 465722630 681224329 60...

output:

698779876

result:

ok single line: '698779876'

Test #2:

score: 0
Wrong Answer
time: 53ms
memory: 8488kb

input:

1 4999 4919 998244353
380477138 780960797 787883474 484131625 121182688 933501638 947532778 257948759 108946829 468475856 5564419 677097370 766236309 678789875 533319074 885579006 769287005 710724535 260200529 599758240 380918586 216469888 78561030 325936496 189815268 268769489 232850763 937923688 9...

output:

137176125

result:

wrong answer 1st lines differ - expected: '475720945', found: '137176125'

Subtask #2:

score: 0
Wrong Answer

Test #4:

score: 5
Accepted
time: 3264ms
memory: 53188kb

input:

2 200000 200000 998244353
903563506 433239074 632684755 970178226 831892753 932120646 157832416 517140217 296101978 998244343 850946564 2367119 708278025 376919151 752106478 994362560 806760771 672325565 9 958330492 343658496 153627310 330649130 983441587 829707074 135609242 706388812 325297147 4972...

output:

108905794

result:

ok single line: '108905794'

Test #5:

score: 0
Wrong Answer
time: 3254ms
memory: 51460kb

input:

2 199910 194100 998244353
587911377 573048398 832688590 809066619 524442920 218487661 649170169 8 150333233 204150153 800582862 464558080 291668841 361834956 998244344 998244349 806341682 775965963 459031329 867640103 425129750 7 998244343 274941091 809744915 443910210 859200100 998244350 725497297 ...

output:

192830797

result:

wrong answer 1st lines differ - expected: '597176160', found: '192830797'

Subtask #3:

score: 8
Accepted

Test #7:

score: 8
Accepted
time: 3310ms
memory: 54160kb

input:

3 200000 200000 998244353
493605813 622283646 579332647 528537957 211102509 336893985 106292723 166710741 443808575 180234697 744331593 252016663 693453924 975202110 519712748 174749950 250990381 584528219 619047448 641168296 914918741 785005029 433175528 400547992 845115512 278159630 227330862 6407...

output:

144815343

result:

ok single line: '144815343'

Test #8:

score: 8
Accepted
time: 3296ms
memory: 52124kb

input:

3 200000 199996 998244353
742 699221406 301 364485093 804 294 873 282584633 204 882 889 438104412 349 737559671 152908512 490 206 11 613 175 155 659898955 983 206756334 273919067 843 898 359154783 360 612 201572138 207697004 396 482 136 361 339 831490112 279585283 516749439 318 198386232 69807322 72...

output:

758876599

result:

ok single line: '758876599'

Test #9:

score: 8
Accepted
time: 3021ms
memory: 37092kb

input:

3 1 200000 998244353
734 796 543458399 920002767 990425370 338 107321680 90089647 557777271 434728777 503 709 616 850 448 884 143526194 299065437 45361809 666577969 923 492965257 850 229 769 183867189 675 463141085 791 281 718 763 240353338 711 671313626 203252664 888743426 450 223 446 542052402 565...

output:

53421494

result:

ok single line: '53421494'

Test #10:

score: 8
Accepted
time: 243ms
memory: 18516kb

input:

3 200000 1 998244353
277786488
264242127 2 319061241 5 8 2 1 51038317 673171629 267552091 920379441 5 880796442 618282833 514210179 9 8 67744028 9 1 691195881 92394487 719900388 638641507 5 663287704 4 579997250 985749664 984980853 4 519857232 4 735668111 3 7 360023171 7 7 234677046 359140782 8 5227...

output:

140453572

result:

ok single line: '140453572'

Subtask #4:

score: 0
Skipped

Dependency #2:

0%

Subtask #5:

score: 0
Skipped

Dependency #3:

100%
Accepted

Dependency #4:

0%

Subtask #6:

score: 15
Accepted

Test #16:

score: 15
Accepted
time: 3338ms
memory: 56052kb

input:

6 200000 200000 998244353
401806059 107033001 530043262 862506025 263940497 48524969 232075248 849682830 420464058 64900333 394986647 954304290 957385577 86269798 579307969 896967626 230611640 527078096 39773429 402432856 495204529 272090833 100466767 562115973 196636941 736050044 580541546 81233872...

output:

562220526

result:

ok single line: '562220526'

Test #17:

score: 15
Accepted
time: 3235ms
memory: 52652kb

input:

6 190000 180000 998244353
331419431 585273774 326021268 911984877 504951700 663 667 967180428 535316997 888573230 112066317 286249963 593 994 230 367194808 906865758 946973557 921 1 302880572 377068830 444057418 953 1000 946 906 274661283 90 345429012 719 547222223 806 856 911 970 110923264 26390908...

output:

467130256

result:

ok single line: '467130256'

Subtask #7:

score: 0
Skipped

Dependency #1:

0%

Subtask #8:

score: 0
Wrong Answer

Dependency #6:

100%
Accepted

Test #22:

score: 16
Accepted
time: 3341ms
memory: 55880kb

input:

8 200000 200000 998244353
476657058 608590028 176876078 188969399 496243267 200861994 525765121 157833667 112147905 888494665 86463084 3240780 881100059 209383369 616595337 943058640 18341235 731579551 223351112 539615902 3395185 187153519 82693410 67612463 680802074 217978817 9323483 678602864 3453...

output:

474782296

result:

ok single line: '474782296'

Test #23:

score: 0
Wrong Answer
time: 3150ms
memory: 50600kb

input:

8 199997 170000 998244353
505360294 8 975 463 168746690 820247591 120436643 410462769 12959063 167531115 300 621 191294387 22 410 679 782371812 449088425 162807445 835 149638206 858 65 581 12 959 310569501 119222808 476951257 403 646 312711442 530 858755892 671888747 458 412 247 114 230 422058417 22...

output:

341026051

result:

wrong answer 1st lines differ - expected: '763867893', found: '341026051'

Subtask #9:

score: 0
Skipped

Dependency #5:

0%

Subtask #10:

score: 0
Skipped

Dependency #1:

0%