QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#63229 | #9020. 测测你的半平面修改查询 | maspy | Compile Error | / | / | C++20 | 30.0kb | 2022-11-21 03:08:09 | 2022-11-21 03:08:12 |
Judging History
你现在查看的是最新测评结果
- [2023-08-10 23:21:45]
- System Update: QOJ starts to keep a history of the judgings of all the submissions.
- [2022-11-21 03:08:12]
- 评测
- 测评结果:Compile Error
- 用时:0ms
- 内存:0kb
- [2022-11-21 03:08:09]
- 提交
answer
#line 1 "library/my_template.hpp"
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pi = pair<ll, ll>;
using vi = vector<ll>;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c))
#define overload4(a, b, c, d, e, ...) e
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) \
overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T pick(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T pick(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T pick(pqg<T> &que) {
assert(que.size());
T a = que.top();
que.pop();
return a;
}
template <typename T>
T pick(vc<T> &que) {
assert(que.size());
T a = que.back();
que.pop_back();
return a;
}
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename F>
ll binary_search(F check, ll ok, ll ng) {
assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = S[i] - first_char; }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
template <typename CNT, typename T>
vc<CNT> bincount(const vc<T> &A, int size) {
vc<CNT> C(size);
for (auto &&x: A) { ++C[x]; }
return C;
}
// stable
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(A.size());
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
int n = len(I);
vc<T> B(n);
FOR(i, n) B[i] = A[I[i]];
return B;
}
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>
namespace detail {
template <typename T, decltype(&T::is_modint) = &T::is_modint>
std::true_type check_value(int);
template <typename T>
std::false_type check_value(long);
} // namespace detail
template <typename T>
struct is_modint : decltype(detail::check_value<T>(0)) {};
template <typename T>
using is_modint_t = enable_if_t<is_modint<T>::value>;
template <typename T>
using is_not_modint_t = enable_if_t<!is_modint<T>::value>;
struct Scanner {
FILE *fp;
char line[(1 << 15) + 1];
size_t st = 0, ed = 0;
void reread() {
memmove(line, line + st, ed - st);
ed -= st;
st = 0;
ed += fread(line + ed, 1, (1 << 15) - ed, fp);
line[ed] = '\0';
}
bool succ() {
while (true) {
if (st == ed) {
reread();
if (st == ed) return false;
}
while (st != ed && isspace(line[st])) st++;
if (st != ed) break;
}
if (ed - st <= 50) {
bool sep = false;
for (size_t i = st; i < ed; i++) {
if (isspace(line[i])) {
sep = true;
break;
}
}
if (!sep) reread();
}
return true;
}
template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
while (true) {
size_t sz = 0;
while (st + sz < ed && !isspace(line[st + sz])) sz++;
ref.append(line + st, sz);
st += sz;
if (!sz || st != ed) break;
reread();
}
return true;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
ref = T(0);
while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
if (neg) ref = -ref;
return true;
}
template <class T, is_modint_t<T> * = nullptr>
bool read_single(T &ref) {
long long val = 0;
bool f = read_single(val);
ref = T(val);
return f;
}
bool read_single(double &ref) {
string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
bool read_single(char &ref) {
string s;
if (!read_single(s) || s.size() != 1) return false;
ref = s[0];
return true;
}
template <class T>
bool read_single(vector<T> &ref) {
for (auto &d: ref) {
if (!read_single(d)) return false;
}
return true;
}
template <class T, class U>
bool read_single(pair<T, U> &p) {
return (read_single(p.first) && read_single(p.second));
}
template <class A, class B, class C>
bool read_single(tuple<A, B, C> &p) {
return (read_single(get<0>(p)) && read_single(get<1>(p))
&& read_single(get<2>(p)));
}
template <class A, class B, class C, class D>
bool read_single(tuple<A, B, C, D> &p) {
return (read_single(get<0>(p)) && read_single(get<1>(p))
&& read_single(get<2>(p)) && read_single(get<3>(p)));
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
Scanner(FILE *fp) : fp(fp) {}
};
struct Printer {
Printer(FILE *_fp) : fp(_fp) {}
~Printer() { flush(); }
static constexpr size_t SIZE = 1 << 15;
FILE *fp;
char line[SIZE], small[50];
size_t pos = 0;
void flush() {
fwrite(line, 1, pos, fp);
pos = 0;
}
void write(const char &val) {
if (pos == SIZE) flush();
line[pos++] = val;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void write(T val) {
if (pos > (1 << 15) - 50) flush();
if (val == 0) {
write('0');
return;
}
if (val < 0) {
write('-');
val = -val; // todo min
}
size_t len = 0;
while (val) {
small[len++] = char(0x30 | (val % 10));
val /= 10;
}
for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
pos += len;
}
void write(const string &s) {
for (char c: s) write(c);
}
void write(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) write(s[i]);
}
void write(const double &x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
void write(const long double &x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
template <class T, is_modint_t<T> * = nullptr>
void write(T &ref) {
write(ref.val);
}
template <class T>
void write(const vector<T> &val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
template <class T, class U>
void write(const pair<T, U> &val) {
write(val.first);
write(' ');
write(val.second);
}
template <class A, class B, class C>
void write(const tuple<A, B, C> &val) {
auto &[a, b, c] = val;
write(a), write(' '), write(b), write(' '), write(c);
}
template <class A, class B, class C, class D>
void write(const tuple<A, B, C, D> &val) {
auto &[a, b, c, d] = val;
write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d);
}
template <class A, class B, class C, class D, class E>
void write(const tuple<A, B, C, D, E> &val) {
auto &[a, b, c, d, e] = val;
write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e);
}
template <class A, class B, class C, class D, class E, class F>
void write(const tuple<A, B, C, D, E, F> &val) {
auto &[a, b, c, d, e, f] = val;
write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e), write(' '), write(f);
}
template <class T, size_t S>
void write(const array<T, S> &val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
void write(i128 val) {
string s;
bool negative = 0;
if(val < 0){
negative = 1;
val = -val;
}
while (val) {
s += '0' + int(val % 10);
val /= 10;
}
if(negative) s += "-";
reverse(all(s));
if (len(s) == 0) s = "0";
write(s);
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
scanner.read(head);
read(tail...);
}
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/mod/modint.hpp"
template <int mod>
struct modint {
static constexpr bool is_modint = true;
int val;
constexpr modint(const ll val = 0) noexcept
: val(val >= 0 ? val % mod : (mod - (-val) % mod) % mod) {}
bool operator<(const modint &other) const {
return val < other.val;
} // To use std::map
modint &operator+=(const modint &p) {
if ((val += p.val) >= mod) val -= mod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += mod - p.val) >= mod) val -= mod;
return *this;
}
modint &operator*=(const modint &p) {
val = (int)(1LL * val * p.val % mod);
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint(-val); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(int64_t n) const {
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
};
struct ArbitraryModInt {
static constexpr bool is_modint = true;
int val;
ArbitraryModInt() : val(0) {}
ArbitraryModInt(int64_t y)
: val(y >= 0 ? y % get_mod()
: (get_mod() - (-y) % get_mod()) % get_mod()) {}
bool operator<(const ArbitraryModInt &other) const {
return val < other.val;
} // To use std::map<ArbitraryModInt, T>
static int &get_mod() {
static int mod = 0;
return mod;
}
static void set_mod(int md) { get_mod() = md; }
ArbitraryModInt &operator+=(const ArbitraryModInt &p) {
if ((val += p.val) >= get_mod()) val -= get_mod();
return *this;
}
ArbitraryModInt &operator-=(const ArbitraryModInt &p) {
if ((val += get_mod() - p.val) >= get_mod()) val -= get_mod();
return *this;
}
ArbitraryModInt &operator*=(const ArbitraryModInt &p) {
long long a = (long long)val * p.val;
int xh = (int)(a >> 32), xl = (int)a, d, m;
asm("divl %4; \n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(get_mod()));
val = m;
return *this;
}
ArbitraryModInt &operator/=(const ArbitraryModInt &p) {
*this *= p.inverse();
return *this;
}
ArbitraryModInt operator-() const { return ArbitraryModInt(get_mod() - val); }
ArbitraryModInt operator+(const ArbitraryModInt &p) const {
return ArbitraryModInt(*this) += p;
}
ArbitraryModInt operator-(const ArbitraryModInt &p) const {
return ArbitraryModInt(*this) -= p;
}
ArbitraryModInt operator*(const ArbitraryModInt &p) const {
return ArbitraryModInt(*this) *= p;
}
ArbitraryModInt operator/(const ArbitraryModInt &p) const {
return ArbitraryModInt(*this) /= p;
}
bool operator==(const ArbitraryModInt &p) const { return val == p.val; }
bool operator!=(const ArbitraryModInt &p) const { return val != p.val; }
ArbitraryModInt inverse() const {
int a = val, b = get_mod(), u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return ArbitraryModInt(u);
}
ArbitraryModInt pow(int64_t n) const {
ArbitraryModInt ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (int(dat.size()) <= n) {
int k = dat.size();
auto q = (mod + k - 1) / k;
int r = k * q - mod;
dat.emplace_back(dat[r] * mint(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {1, 1};
assert(0 <= n);
if (n >= mod) return 0;
while (int(dat.size()) <= n) {
int k = dat.size();
dat.emplace_back(dat[k - 1] * mint(k));
}
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {1, 1};
assert(-1 <= n && n < mod);
if (n == -1) return mint(0);
while (int(dat.size()) <= n) {
int k = dat.size();
dat.emplace_back(dat[k - 1] * inv<mint>(k));
}
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if (dense) return C_dense<mint>(n, k);
if (!large) return fact<mint>(n) * fact_inv<mint>(k) * fact_inv<mint>(n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) { x *= mint(n - i); }
x *= fact_inv<mint>(k);
return x;
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d] (1-x) ^ {-n} の計算
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
using amint = ArbitraryModInt;
#line 2 "library/random/base.hpp"
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "library/ds/hashmap.hpp"
template <typename Val, int LOG = 20>
struct HashMapLL {
int N;
ll* keys;
Val* vals;
vc<int> IDS;
bitset<1 << LOG> used;
const int shift;
const uint64_t r = 11995408973635179863ULL;
HashMapLL()
: N(1 << LOG), keys(new ll[N]), vals(new Val[N]), shift(64 - __lg(N)) {}
int hash(ll x) {
static const uint64_t FIXED_RANDOM
= std::chrono::steady_clock::now().time_since_epoch().count();
return (uint64_t(x + FIXED_RANDOM) * r) >> shift;
}
int index(const ll& key) {
int i = 0;
for (i = hash(key); used[i] && keys[i] != key; (i += 1) &= (N - 1)) {}
return i;
}
Val& operator[](const ll& key) {
int i = index(key);
if (!used[i]) IDS.eb(i), used[i] = 1, keys[i] = key, vals[i] = Val{};
return vals[i];
}
Val get(const ll& key, Val default_value) {
int i = index(key);
if (!used[i]) return default_value;
return vals[i];
}
bool contain(const ll& key) {
int i = index(key);
return used[i] && keys[i] == key;
}
bool count(const ll& key) {
int i = index(key);
return used[i] && keys[i] == key;
}
void reset() {
for (auto&& i: IDS) used[i] = 0;
IDS.clear();
}
vc<pair<ll, Val>> items() {
vc<pair<ll, Val>> res;
res.reserve(len(IDS));
for (auto&& i: IDS) res.eb(keys[i], vals[i]);
return res;
}
};
template <typename KEY, typename VAL, int LOG>
struct HashMap {
HashMapLL<VAL, LOG> MP;
function<ll(KEY)> f;
HashMap(function<ll(KEY)> f) : MP(), f(f) {}
int index(const KEY& key) { return MP.index(f(key)); }
VAL& operator[](const KEY& key) { return MP[f(key)]; }
bool contain(const KEY& key) { return MP.contain(f(key)); }
bool count(const KEY& key) { return MP.count(f(key)); }
void reset() { MP.reset(); }
};
#line 6 "main.cpp"
using mint = modint107;
struct MonoX {
using value_type = array<mint, 3>;
using X = value_type;
static X op(X x, X y) {
FOR(i, 3) x[i] += y[i];
return x;
}
static constexpr X unit() { return {}; }
static constexpr bool commute = 1;
};
struct MonoA {
using value_type = array<mint, 9>;
using X = value_type;
static X op(X x, X y) {
// 行列積 yx
X z;
FOR(i, 3) FOR(j, 3) FOR(k, 3) {
z[3 * i + k] += y[3 * i + j] * x[3 * j + k];
}
return z;
}
static constexpr X unit() { return {1, 0, 0, 0, 1, 0, 0, 0, 1}; }
static constexpr bool commute = 0;
};
struct Lazy {
using MX = MonoX;
using MA = MonoA;
using X_structure = MX;
using A_structure = MA;
using X = typename MX::value_type;
using A = typename MA::value_type;
static constexpr X act(const X &x, const A &a) {
// ax = y
X y;
FOR(i, 3) FOR(j, 3) y[i] += a[3 * i + j] * x[j];
return y;
}
};
/*
次を行えるようにする。
merge(u, v):u, v をマージした成分を表すノード w を作り、かえす
apply(u, a):作用素 a を作用
prod(u):u の連結成分の和をとる
rollback():Lazy はそのままにして連結性を解除する
*/
template <typename Lazy>
struct Connected_Component_Query {
using Monoid_X = typename Lazy::X_structure;
using Monoid_A = typename Lazy::A_structure;
using X = typename Monoid_X::value_type;
using A = typename Monoid_A::value_type;
struct Node {
int l, r;
X prod;
A lazy; // その頂点における prod は lazy を反映済
};
const int N;
vc<int> not_used;
vc<Node> nodes;
vc<bool> is_root;
vc<int> history;
Connected_Component_Query(vc<X> dat)
: N(len(dat)), nodes(N + N), is_root(N + N) {
FOR(i, N, N + N) not_used.eb(i);
FOR(i, N) is_root[i] = 1;
FOR(v, N) { nodes[v] = Node{-1, -1, dat[v], Monoid_A::unit()}; }
}
int merge(int u, int v) {
int w = pick(not_used);
is_root[u] = 0;
is_root[v] = 0;
is_root[w] = 1;
nodes[w].l = u;
nodes[w].r = v;
nodes[w].prod = Monoid_X::op(nodes[u].prod, nodes[v].prod);
nodes[w].lazy = Monoid_A::unit();
history.eb(w);
return w;
}
void apply(int u, A a) {
// print("merge", u, ",", a);
assert(is_root[u]);
nodes[u].lazy = Monoid_A::op(nodes[u].lazy, a);
nodes[u].prod = Lazy::act(nodes[u].prod, a);
}
X prod(int u) {
assert(is_root[u]);
return nodes[u].prod;
}
int time() { return len(history); }
// merge を解除。lazy は残り続けることに注意する。
void rollback(int t) {
assert(len(history) >= t);
while (len(history) > t) {
int w = pick(history);
int u = nodes[w].l;
int v = nodes[w].r;
is_root[w] = 0;
is_root[u] = is_root[v] = 1;
apply(u, nodes[w].lazy);
apply(v, nodes[w].lazy);
not_used.eb(w);
// print("undo_merge", u, v, w);
}
}
};
void solve() {
LL(N);
vc<pi> pos(N + N);
using ARR = typename MonoX::value_type;
using MAT = typename MonoA::value_type;
using LINE = tuple<ll, ll, ll>;
vc<ARR> dat(N);
FOR(i, N) {
LL(a, b, c, d, e);
pos[i] = {a, b};
dat[i] = {c, d, e};
}
Connected_Component_Query<Lazy> X(dat);
dat.resize(N + N);
using QT = pair<LINE, MAT>;
LL(Q);
vc<QT> query(Q);
FOR(q, Q) {
LINE L;
MAT M;
read(L);
FOR(i, 3) FOR(j, 3) read(M[3 * i + j]);
query[q] = {L, M};
}
vc<ll> hash_base(Q);
FOR(i, Q) hash_base[i] = RNG_64();
const ll INF = 1LL << 30;
// x = -INF での各直線の y 座標
auto calc_hash_naive = [&](vc<int> &V, vc<LINE> &lines) -> vi {
vi H(len(V));
FOR(i, len(V)) {
auto [x, y] = pos[V[i]];
FOR(j, len(lines)) {
auto [a, b, c] = lines[j];
ll val = a * x + b * y - c;
if (val > 0) H[i] += hash_base[j];
}
}
return H;
};
auto calc_hash = [&](vc<int> &V, vc<LINE> &lines) -> vi {
// [L, R) 内の直線に関して V がどれの上下にあるかなどのハッシュを得る
// v の下にある直線:+1
// あとはここを実装すればよい
const int n = len(lines);
vc<double> Y(n);
FOR(i, n) {
auto [a, b, c] = lines[i];
if (b < 0) {
tie(a, b, c) = mt(-a, -b, -c);
lines[i] = {a, b, c};
}
Y[i] = double(c - a * (-INF)) / b;
}
auto I = argsort(Y);
lines = rearrange(lines, I);
// calc_hash_naive(V, lines);
vi H(len(V));
// x = -INF での floor(y)
// hash 累積和。上下をスワップしながらこれを更新する
vi Hc(n + 1);
FOR(i, n) Hc[i + 1] = Hc[i] + hash_base[i];
vc<tuple<ll, int, int>> event;
FOR(i, n) FOR(j, i + 1, n) {
auto [ai, bi, ci] = lines[i];
auto [aj, bj, cj] = lines[j];
ll det = ai * bj - aj * bi;
if (det == 0) continue;
if (det < 0) {
ai = -ai;
bi = -bi;
ci = -ci;
det = -det;
}
// [x, x+1) の間で順序が変わる
ll x = floor(ci * bj - cj * bi, det);
event.eb(x, i, j);
}
FOR(i, len(V)) {
auto [x, y] = pos[V[i]];
event.eb(x, -1, i);
}
sort(all(event));
vi idx(n); // idx[i]:下から i 番目の直線はどれか
iota(all(idx), 0);
vi rk(n); // i 番目の直線は下から何番目に入っているか
iota(all(rk), 0);
for (auto &&[x, i, j]: event) {
if (i == -1) {
i = j;
ll y = pos[V[i]].se;
// 下側に k 個以上の直線がいるよ
auto check = [&](int k) -> bool {
if (k > n) return false;
if (k == 0) return true;
int i = idx[k - 1];
auto [a, b, c] = lines[i];
ll val = a * x + b * y - c;
return val > 0;
};
ll k = binary_search(check, 0, n + 1);
H[i] = Hc[k];
} else {
Hc[rk[i] + 1] -= hash_base[i];
idx[rk[i]] -= i;
rk[i]++;
idx[rk[i]] += i;
Hc[rk[j]] += hash_base[j];
idx[rk[j]] -= j;
rk[j]--;
idx[rk[j]] += j;
}
}
return H;
};
HashMapLL<vc<int>> MP;
auto classify = [&](vc<int> &V, int L, int R) -> vvc<int> {
MP.reset();
// [L, R) 内の直線によって、V を分類する。
vc<LINE> lines;
FOR(i, L, R) lines.eb(query[i].fi);
auto H = calc_hash(V, lines);
vvc<int> res;
FOR(i, len(V)) MP[H[i]].eb(V[i]);
for (auto &&[key, vs]: MP.items()) { res.eb(vs); }
return res;
};
auto dfs = [&](auto &dfs, int L, int R, vc<int> &V) -> void {
if (R - L <= 1) {
FOR(qid, L, R) {
ARR ANS{};
auto [a, b, c] = query[qid].fi;
for (auto &&v: V) {
auto [x, y] = pos[v];
if (a * x + b * y >= c) continue;
ANS = MonoX::op(ANS, X.prod(v));
X.apply(v, query[qid].se);
}
print(ANS);
}
return;
}
int M = (L + R) / 2;
ll n = R - L;
if (n * n / 20 > len(V)) {
dfs(dfs, L, M, V);
dfs(dfs, M, R, V);
return;
}
int t = X.time();
// merge
auto CLS = classify(V, L, R);
vc<int> newV;
for (auto &&vs: CLS) {
int x = vs[0];
pi p = pos[x];
FOR(i, 1, len(vs)) {
x = X.merge(x, vs[i]);
pos[x] = p;
}
newV.eb(x);
}
dfs(dfs, L, M, newV);
dfs(dfs, M, R, newV);
X.rollback(t);
};
vc<int> V(N);
iota(all(V), 0);
dfs(dfs, 0, Q, V);
}
signed main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << setprecision(15);
solve();
return 0;
}
詳細信息
Compile Failed