QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#63229#9020. 测测你的半平面修改查询maspyCompile Error//C++2030.0kb2022-11-21 03:08:092022-11-21 03:08:12

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2022-11-21 03:08:12]
  • 评测
  • [2022-11-21 03:08:09]
  • 提交

answer

#line 1 "library/my_template.hpp"
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using pi = pair<ll, ll>;
using vi = vector<ll>;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c))
#define overload4(a, b, c, d, e, ...) e
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) \
  overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T pick(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}

template <typename T>
T pick(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}

template <typename T>
T pick(pqg<T> &que) {
  assert(que.size());
  T a = que.top();
  que.pop();
  return a;
}

template <typename T>
T pick(vc<T> &que) {
  assert(que.size());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}

template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}

template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename F>
ll binary_search(F check, ll ok, ll ng) {
  assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return ok;
}

template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = S[i] - first_char; }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

template <typename CNT, typename T>
vc<CNT> bincount(const vc<T> &A, int size) {
  vc<CNT> C(size);
  for (auto &&x: A) { ++C[x]; }
  return C;
}

// stable
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(A.size());
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  int n = len(I);
  vc<T> B(n);
  FOR(i, n) B[i] = A[I[i]];
  return B;
}
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace detail {
template <typename T, decltype(&T::is_modint) = &T::is_modint>
std::true_type check_value(int);
template <typename T>
std::false_type check_value(long);
} // namespace detail

template <typename T>
struct is_modint : decltype(detail::check_value<T>(0)) {};
template <typename T>
using is_modint_t = enable_if_t<is_modint<T>::value>;
template <typename T>
using is_not_modint_t = enable_if_t<!is_modint<T>::value>;

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <class T, is_modint_t<T> * = nullptr>
  bool read_single(T &ref) {
    long long val = 0;
    bool f = read_single(val);
    ref = T(val);
    return f;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <class A, class B, class C>
  bool read_single(tuple<A, B, C> &p) {
    return (read_single(get<0>(p)) && read_single(get<1>(p))
            && read_single(get<2>(p)));
  }
  template <class A, class B, class C, class D>
  bool read_single(tuple<A, B, C, D> &p) {
    return (read_single(get<0>(p)) && read_single(get<1>(p))
            && read_single(get<2>(p)) && read_single(get<3>(p)));
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char &val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string &s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double &x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double &x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <class T, is_modint_t<T> * = nullptr>
  void write(T &ref) {
    write(ref.val);
  }
  template <class T>
  void write(const vector<T> &val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> &val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <class A, class B, class C>
  void write(const tuple<A, B, C> &val) {
    auto &[a, b, c] = val;
    write(a), write(' '), write(b), write(' '), write(c);
  }
  template <class A, class B, class C, class D>
  void write(const tuple<A, B, C, D> &val) {
    auto &[a, b, c, d] = val;
    write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d);
  }
  template <class A, class B, class C, class D, class E>
  void write(const tuple<A, B, C, D, E> &val) {
    auto &[a, b, c, d, e] = val;
    write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e);
  }
  template <class A, class B, class C, class D, class E, class F>
  void write(const tuple<A, B, C, D, E, F> &val) {
    auto &[a, b, c, d, e, f] = val;
    write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e), write(' '), write(f);
  }
  template <class T, size_t S>
  void write(const array<T, S> &val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if(val < 0){
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if(negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};

Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);

void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)      \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/mod/modint.hpp"

template <int mod>
struct modint {
  static constexpr bool is_modint = true;
  int val;
  constexpr modint(const ll val = 0) noexcept
      : val(val >= 0 ? val % mod : (mod - (-val) % mod) % mod) {}
  bool operator<(const modint &other) const {
    return val < other.val;
  } // To use std::map
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= mod) val -= mod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += mod - p.val) >= mod) val -= mod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = (int)(1LL * val * p.val % mod);
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint(-val); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(int64_t n) const {
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  static constexpr int get_mod() { return mod; }
};

struct ArbitraryModInt {
  static constexpr bool is_modint = true;
  int val;
  ArbitraryModInt() : val(0) {}
  ArbitraryModInt(int64_t y)
      : val(y >= 0 ? y % get_mod()
                   : (get_mod() - (-y) % get_mod()) % get_mod()) {}
  bool operator<(const ArbitraryModInt &other) const {
    return val < other.val;
  } // To use std::map<ArbitraryModInt, T>
  static int &get_mod() {
    static int mod = 0;
    return mod;
  }
  static void set_mod(int md) { get_mod() = md; }
  ArbitraryModInt &operator+=(const ArbitraryModInt &p) {
    if ((val += p.val) >= get_mod()) val -= get_mod();
    return *this;
  }
  ArbitraryModInt &operator-=(const ArbitraryModInt &p) {
    if ((val += get_mod() - p.val) >= get_mod()) val -= get_mod();
    return *this;
  }
  ArbitraryModInt &operator*=(const ArbitraryModInt &p) {
    long long a = (long long)val * p.val;
    int xh = (int)(a >> 32), xl = (int)a, d, m;
    asm("divl %4; \n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(get_mod()));
    val = m;
    return *this;
  }
  ArbitraryModInt &operator/=(const ArbitraryModInt &p) {
    *this *= p.inverse();
    return *this;
  }
  ArbitraryModInt operator-() const { return ArbitraryModInt(get_mod() - val); }
  ArbitraryModInt operator+(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) += p;
  }
  ArbitraryModInt operator-(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) -= p;
  }
  ArbitraryModInt operator*(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) *= p;
  }
  ArbitraryModInt operator/(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) /= p;
  }
  bool operator==(const ArbitraryModInt &p) const { return val == p.val; }
  bool operator!=(const ArbitraryModInt &p) const { return val != p.val; }
  ArbitraryModInt inverse() const {
    int a = val, b = get_mod(), u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return ArbitraryModInt(u);
  }
  ArbitraryModInt pow(int64_t n) const {
    ArbitraryModInt ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (int(dat.size()) <= n) {
    int k = dat.size();
    auto q = (mod + k - 1) / k;
    int r = k * q - mod;
    dat.emplace_back(dat[r] * mint(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {1, 1};
  assert(0 <= n);
  if (n >= mod) return 0;
  while (int(dat.size()) <= n) {
    int k = dat.size();
    dat.emplace_back(dat[k - 1] * mint(k));
  }
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {1, 1};
  assert(-1 <= n && n < mod);
  if (n == -1) return mint(0);
  while (int(dat.size()) <= n) {
    int k = dat.size();
    dat.emplace_back(dat[k - 1] * inv<mint>(k));
  }
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  static vvc<mint> C;
  static int H = 0, W = 0;

  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };

  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if (dense) return C_dense<mint>(n, k);
  if (!large) return fact<mint>(n) * fact_inv<mint>(k) * fact_inv<mint>(n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) { x *= mint(n - i); }
  x *= fact_inv<mint>(k);
  return x;
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d] (1-x) ^ {-n} の計算
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
using amint = ArbitraryModInt;
#line 2 "library/random/base.hpp"

u64 RNG_64() {
  static uint64_t x_
      = uint64_t(chrono::duration_cast<chrono::nanoseconds>(
                     chrono::high_resolution_clock::now().time_since_epoch())
                     .count())
        * 10150724397891781847ULL;
  x_ ^= x_ << 7;
  return x_ ^= x_ >> 9;
}

u64 RNG(u64 lim) { return RNG_64() % lim; }

ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "library/ds/hashmap.hpp"
template <typename Val, int LOG = 20>
struct HashMapLL {
  int N;
  ll* keys;
  Val* vals;
  vc<int> IDS;
  bitset<1 << LOG> used;
  const int shift;
  const uint64_t r = 11995408973635179863ULL;
  HashMapLL()
      : N(1 << LOG), keys(new ll[N]), vals(new Val[N]), shift(64 - __lg(N)) {}
  int hash(ll x) {
    static const uint64_t FIXED_RANDOM
        = std::chrono::steady_clock::now().time_since_epoch().count();
    return (uint64_t(x + FIXED_RANDOM) * r) >> shift;
  }

  int index(const ll& key) {
    int i = 0;
    for (i = hash(key); used[i] && keys[i] != key; (i += 1) &= (N - 1)) {}
    return i;
  }

  Val& operator[](const ll& key) {
    int i = index(key);
    if (!used[i]) IDS.eb(i), used[i] = 1, keys[i] = key, vals[i] = Val{};
    return vals[i];
  }

  Val get(const ll& key, Val default_value) {
    int i = index(key);
    if (!used[i]) return default_value;
    return vals[i];
  }

  bool contain(const ll& key) {
    int i = index(key);
    return used[i] && keys[i] == key;
  }

  bool count(const ll& key) {
    int i = index(key);
    return used[i] && keys[i] == key;
  }

  void reset() {
    for (auto&& i: IDS) used[i] = 0;
    IDS.clear();
  }

  vc<pair<ll, Val>> items() {
    vc<pair<ll, Val>> res;
    res.reserve(len(IDS));
    for (auto&& i: IDS) res.eb(keys[i], vals[i]);
    return res;
  }
};

template <typename KEY, typename VAL, int LOG>
struct HashMap {
  HashMapLL<VAL, LOG> MP;
  function<ll(KEY)> f;
  HashMap(function<ll(KEY)> f) : MP(), f(f) {}

  int index(const KEY& key) { return MP.index(f(key)); }

  VAL& operator[](const KEY& key) { return MP[f(key)]; }

  bool contain(const KEY& key) { return MP.contain(f(key)); }

  bool count(const KEY& key) { return MP.count(f(key)); }

  void reset() { MP.reset(); }
};
#line 6 "main.cpp"

using mint = modint107;

struct MonoX {
  using value_type = array<mint, 3>;
  using X = value_type;
  static X op(X x, X y) {
    FOR(i, 3) x[i] += y[i];
    return x;
  }
  static constexpr X unit() { return {}; }
  static constexpr bool commute = 1;
};

struct MonoA {
  using value_type = array<mint, 9>;
  using X = value_type;
  static X op(X x, X y) {
    // 行列積 yx
    X z;
    FOR(i, 3) FOR(j, 3) FOR(k, 3) {
      z[3 * i + k] += y[3 * i + j] * x[3 * j + k];
    }
    return z;
  }
  static constexpr X unit() { return {1, 0, 0, 0, 1, 0, 0, 0, 1}; }
  static constexpr bool commute = 0;
};

struct Lazy {
  using MX = MonoX;
  using MA = MonoA;
  using X_structure = MX;
  using A_structure = MA;
  using X = typename MX::value_type;
  using A = typename MA::value_type;
  static constexpr X act(const X &x, const A &a) {
    // ax = y
    X y;
    FOR(i, 3) FOR(j, 3) y[i] += a[3 * i + j] * x[j];
    return y;
  }
};

/*
次を行えるようにする。
merge(u, v):u, v をマージした成分を表すノード w を作り、かえす
apply(u, a):作用素 a を作用
prod(u):u の連結成分の和をとる
rollback():Lazy はそのままにして連結性を解除する
*/
template <typename Lazy>
struct Connected_Component_Query {
  using Monoid_X = typename Lazy::X_structure;
  using Monoid_A = typename Lazy::A_structure;
  using X = typename Monoid_X::value_type;
  using A = typename Monoid_A::value_type;

  struct Node {
    int l, r;
    X prod;
    A lazy; // その頂点における prod は lazy を反映済
  };

  const int N;
  vc<int> not_used;
  vc<Node> nodes;
  vc<bool> is_root;
  vc<int> history;

  Connected_Component_Query(vc<X> dat)
      : N(len(dat)), nodes(N + N), is_root(N + N) {
    FOR(i, N, N + N) not_used.eb(i);
    FOR(i, N) is_root[i] = 1;
    FOR(v, N) { nodes[v] = Node{-1, -1, dat[v], Monoid_A::unit()}; }
  }

  int merge(int u, int v) {
    int w = pick(not_used);
    is_root[u] = 0;
    is_root[v] = 0;
    is_root[w] = 1;
    nodes[w].l = u;
    nodes[w].r = v;
    nodes[w].prod = Monoid_X::op(nodes[u].prod, nodes[v].prod);
    nodes[w].lazy = Monoid_A::unit();
    history.eb(w);
    return w;
  }

  void apply(int u, A a) {
    // print("merge", u, ",", a);
    assert(is_root[u]);
    nodes[u].lazy = Monoid_A::op(nodes[u].lazy, a);
    nodes[u].prod = Lazy::act(nodes[u].prod, a);
  }

  X prod(int u) {
    assert(is_root[u]);
    return nodes[u].prod;
  }

  int time() { return len(history); }

  // merge を解除。lazy は残り続けることに注意する。
  void rollback(int t) {
    assert(len(history) >= t);
    while (len(history) > t) {
      int w = pick(history);
      int u = nodes[w].l;
      int v = nodes[w].r;
      is_root[w] = 0;
      is_root[u] = is_root[v] = 1;
      apply(u, nodes[w].lazy);
      apply(v, nodes[w].lazy);
      not_used.eb(w);
      // print("undo_merge", u, v, w);
    }
  }
};

void solve() {
  LL(N);
  vc<pi> pos(N + N);
  using ARR = typename MonoX::value_type;
  using MAT = typename MonoA::value_type;
  using LINE = tuple<ll, ll, ll>;

  vc<ARR> dat(N);
  FOR(i, N) {
    LL(a, b, c, d, e);
    pos[i] = {a, b};
    dat[i] = {c, d, e};
  }

  Connected_Component_Query<Lazy> X(dat);
  dat.resize(N + N);

  using QT = pair<LINE, MAT>;
  LL(Q);
  vc<QT> query(Q);
  FOR(q, Q) {
    LINE L;
    MAT M;
    read(L);
    FOR(i, 3) FOR(j, 3) read(M[3 * i + j]);
    query[q] = {L, M};
  }

  vc<ll> hash_base(Q);
  FOR(i, Q) hash_base[i] = RNG_64();

  const ll INF = 1LL << 30;
  // x = -INF での各直線の y 座標

  auto calc_hash_naive = [&](vc<int> &V, vc<LINE> &lines) -> vi {
    vi H(len(V));
    FOR(i, len(V)) {
      auto [x, y] = pos[V[i]];
      FOR(j, len(lines)) {
        auto [a, b, c] = lines[j];
        ll val = a * x + b * y - c;
        if (val > 0) H[i] += hash_base[j];
      }
    }
    return H;
  };

  auto calc_hash = [&](vc<int> &V, vc<LINE> &lines) -> vi {
    // [L, R) 内の直線に関して V がどれの上下にあるかなどのハッシュを得る
    // v の下にある直線:+1
    // あとはここを実装すればよい
    const int n = len(lines);
    vc<double> Y(n);
    FOR(i, n) {
      auto [a, b, c] = lines[i];
      if (b < 0) {
        tie(a, b, c) = mt(-a, -b, -c);
        lines[i] = {a, b, c};
      }
      Y[i] = double(c - a * (-INF)) / b;
    }
    auto I = argsort(Y);
    lines = rearrange(lines, I);

    // calc_hash_naive(V, lines);
    vi H(len(V));
    // x = -INF での floor(y)

    // hash 累積和。上下をスワップしながらこれを更新する
    vi Hc(n + 1);
    FOR(i, n) Hc[i + 1] = Hc[i] + hash_base[i];

    vc<tuple<ll, int, int>> event;
    FOR(i, n) FOR(j, i + 1, n) {
      auto [ai, bi, ci] = lines[i];
      auto [aj, bj, cj] = lines[j];
      ll det = ai * bj - aj * bi;
      if (det == 0) continue;
      if (det < 0) {
        ai = -ai;
        bi = -bi;
        ci = -ci;
        det = -det;
      }
      // [x, x+1) の間で順序が変わる
      ll x = floor(ci * bj - cj * bi, det);
      event.eb(x, i, j);
    }
    FOR(i, len(V)) {
      auto [x, y] = pos[V[i]];
      event.eb(x, -1, i);
    }
    sort(all(event));

    vi idx(n); // idx[i]:下から i 番目の直線はどれか
    iota(all(idx), 0);
    vi rk(n); // i 番目の直線は下から何番目に入っているか
    iota(all(rk), 0);

    for (auto &&[x, i, j]: event) {
      if (i == -1) {
        i = j;
        ll y = pos[V[i]].se;
        // 下側に k 個以上の直線がいるよ
        auto check = [&](int k) -> bool {
          if (k > n) return false;
          if (k == 0) return true;
          int i = idx[k - 1];
          auto [a, b, c] = lines[i];
          ll val = a * x + b * y - c;
          return val > 0;
        };
        ll k = binary_search(check, 0, n + 1);
        H[i] = Hc[k];
      } else {
        Hc[rk[i] + 1] -= hash_base[i];
        idx[rk[i]] -= i;
        rk[i]++;
        idx[rk[i]] += i;
        Hc[rk[j]] += hash_base[j];
        idx[rk[j]] -= j;
        rk[j]--;
        idx[rk[j]] += j;
      }
    }
    return H;
  };

  HashMapLL<vc<int>> MP;

  auto classify = [&](vc<int> &V, int L, int R) -> vvc<int> {
    MP.reset();
    // [L, R) 内の直線によって、V を分類する。
    vc<LINE> lines;
    FOR(i, L, R) lines.eb(query[i].fi);
    auto H = calc_hash(V, lines);
    vvc<int> res;
    FOR(i, len(V)) MP[H[i]].eb(V[i]);
    for (auto &&[key, vs]: MP.items()) { res.eb(vs); }
    return res;
  };

  auto dfs = [&](auto &dfs, int L, int R, vc<int> &V) -> void {
    if (R - L <= 1) {
      FOR(qid, L, R) {
        ARR ANS{};
        auto [a, b, c] = query[qid].fi;
        for (auto &&v: V) {
          auto [x, y] = pos[v];
          if (a * x + b * y >= c) continue;
          ANS = MonoX::op(ANS, X.prod(v));
          X.apply(v, query[qid].se);
        }
        print(ANS);
      }
      return;
    }
    int M = (L + R) / 2;
    ll n = R - L;
    if (n * n / 20 > len(V)) {
      dfs(dfs, L, M, V);
      dfs(dfs, M, R, V);
      return;
    }
    int t = X.time();
    // merge
    auto CLS = classify(V, L, R);
    vc<int> newV;
    for (auto &&vs: CLS) {
      int x = vs[0];
      pi p = pos[x];
      FOR(i, 1, len(vs)) {
        x = X.merge(x, vs[i]);
        pos[x] = p;
      }
      newV.eb(x);
    }

    dfs(dfs, L, M, newV);
    dfs(dfs, M, R, newV);
    X.rollback(t);
  };

  vc<int> V(N);
  iota(all(V), 0);
  dfs(dfs, 0, Q, V);
}

signed main() {
  cin.tie(nullptr);
  ios::sync_with_stdio(false);
  cout << setprecision(15);

  solve();

  return 0;
}

详细

Compile Failed