QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#581793#9381. 502 Bad GatewayFalse0099TL 1223ms3688kbC++233.7kb2024-09-22 14:13:232024-09-22 14:13:39

Judging History

你现在查看的是最新测评结果

  • [2024-09-24 14:55:37]
  • hack成功,自动添加数据
  • (/hack/886)
  • [2024-09-22 14:13:39]
  • 评测
  • 测评结果:TL
  • 用时:1223ms
  • 内存:3688kb
  • [2024-09-22 14:13:23]
  • 提交

answer

#include <bits/stdc++.h>
#define int long long
#define endl '\n'
int INF = 0x3f3f3f3f3f3f3f3f;
using namespace std;
typedef pair<int, int> PII;

void init() {
    // 初始化代码
}

template<class T>
struct Frac {
    T num;
    T den;
    Frac(T num_, T den_) : num(num_), den(den_) {
        if (den < 0) {
            den = -den;
            num = -num;
        }
    }
    void Norm() {
        T g = __gcd(num, den);
        num /= g, den /= g;
    }
    Frac() : Frac(0, 1) {}
    Frac(T num_) : Frac(num_, 1) {}
    explicit operator double() const {
        return 1. * num / den;
    }
    Frac& operator+=(const Frac& rhs) {
        num = num * rhs.den + rhs.num * den;
        den *= rhs.den;
        Norm();
        return *this;
    }
    Frac& operator-=(const Frac& rhs) {
        num = num * rhs.den - rhs.num * den;
        den *= rhs.den;
        Norm();
        return *this;
    }
    Frac& operator*=(const Frac& rhs) {
        num *= rhs.num;
        den *= rhs.den;
        Norm();
        return *this;
    }
    Frac& operator/=(const Frac& rhs) {
        num *= rhs.den;
        den *= rhs.num;
        Norm();
        if (den < 0) {
            num = -num;
            den = -den;
        }
        return *this;
    }
    friend Frac operator+(Frac lhs, const Frac& rhs) {
        return lhs += rhs;
    }
    friend Frac operator-(Frac lhs, const Frac& rhs) {
        return lhs -= rhs;
    }
    friend Frac operator*(Frac lhs, const Frac& rhs) {
        return lhs *= rhs;
    }
    friend Frac operator/(Frac lhs, const Frac& rhs) {
        return lhs /= rhs;
    }
    friend Frac operator-(const Frac& a) {
        return Frac(-a.num, a.den);
    }
    friend bool operator==(const Frac& lhs, const Frac& rhs) {
        return lhs.num * rhs.den == rhs.num * lhs.den;
    }
    friend bool operator!=(const Frac& lhs, const Frac& rhs) {
        return lhs.num * rhs.den != rhs.num * lhs.den;
    }
    friend bool operator<(const Frac& lhs, const Frac& rhs) {
        return (double)lhs < (double)rhs;
    }
    friend bool operator>(const Frac& lhs, const Frac& rhs) {
        return (double)lhs > (double)rhs;
    }
    friend bool operator<=(const Frac& lhs, const Frac& rhs) {
        return (double)lhs <= (double)rhs;
    }
    friend bool operator>=(const Frac& lhs, const Frac& rhs) {
        return (double)lhs >= (double)rhs;
    }
    friend std::ostream& operator<<(std::ostream& os, Frac x) {
        T g = __gcd(x.num, x.den);
        if (x.den < 0) {
            x.den = -x.den;
            x.num = -x.num;
        }
            return os << (long long)(x.num / g)<<" "<<(long long)(x.den/g);
       
    }
};

void solve() {
    long long _;
    cin >> _;
    Frac<int> n(_);

    // 计算 sqrt(2 * n) 并转换为 Frac<int> 类型
    double sqrt_val = sqrt(2.0 * double(n));
    int sqrt_val_i=(int)(floor(sqrt_val));
    Frac<int> t(sqrt_val_i, 1ll);

    Frac<int> ans(INF, 1ll);
    auto calc = [&](Frac<int> mid) {
        return mid / 2 + n / mid-Frac<int>(1,2);
    };
    for (int dx = 0; dx <= 5; dx++) {
        Frac<int> candidate = t + Frac<int>(dx);
        //cerr<<candidate<<" "<<calc(candidate)<<endl;
        if (candidate >= 1 ) {
            ans = min(ans, calc(candidate));
        }
        candidate = t - Frac<int>(dx);
        //cerr<<candidate<<" "<<calc(candidate)<<endl;
        if (candidate >= 1) {
            ans = min(ans, calc(candidate));
        }
    }
    cout << ans << endl;
}

signed main() {
    ios::sync_with_stdio(false), cin.tie(0);
    long long t;
    t = 1;
    cin >> t;
    init();
    while (t--) {
        solve();
    }
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3688kb

input:

3
1
2
3

output:

1 1
3 2
2 1

result:

ok 3 lines

Test #2:

score: 0
Accepted
time: 1223ms
memory: 3668kb

input:

1000000
1
1000000000
1
1
1000000000
1
1000000000
1
1
1
1000000000
1
1
1000000000
1
1000000000
1000000000
1
1000000000
1
1
1000000000
1
1000000000
1000000000
1
1000000000
1000000000
1000000000
1000000000
1000000000
1000000000
1
1
1000000000
1
1000000000
1000000000
1000000000
1000000000
1
1
1
10000000...

output:

1 1
1999961560 44721
1 1
1 1
1999961560 44721
1 1
1999961560 44721
1 1
1 1
1 1
1999961560 44721
1 1
1 1
1999961560 44721
1 1
1999961560 44721
1999961560 44721
1 1
1999961560 44721
1 1
1 1
1999961560 44721
1 1
1999961560 44721
1999961560 44721
1 1
1999961560 44721
1999961560 44721
1999961560 44721
19...

result:

ok 1000000 lines

Test #3:

score: -100
Time Limit Exceeded

input:

1000000
158260522
877914575
602436426
24979445
861648772
623690081
433933447
476190629
262703497
211047202
971407775
628894325
731963982
822804784
450968417
430302156
982631932
161735902
880895728
923078537
707723857
189330739
910286918
802329211
404539679
303238506
317063340
492686568
773361868
125...

output:

316511467 17791
1755824328 41903
1204845831 34711
49954223 7068
1723292600 41513
623676492 17659
867864517 29460
952375859 30861
262700539 11461
422085442 20545
1942776701 44077
251551941 7093
1463896912 38261
1645584679 40566
901913913 30032
107573492 3667
1965228547 44331
323457022 17985
176178307...

result: