QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#552769 | #9248. An Easy Math Problem | ucup-team1134# | AC ✓ | 56ms | 3832kb | C++23 | 6.2kb | 2024-09-08 02:09:07 | 2024-09-08 02:09:07 |
Judging History
你现在查看的是测评时间为 2024-09-08 02:09:07 的历史记录
- [2024-10-31 22:36:43]
- hack成功,自动添加数据
- (/hack/1098)
- [2024-10-31 22:13:58]
- hack成功,自动添加数据
- (/hack/1096)
- [2024-10-31 22:00:43]
- hack成功,自动添加数据
- (/hack/1095)
- [2024-09-08 02:09:07]
- 提交
answer
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }
#define vi vector<int>
#define vl vector<ll>
#define vii vector<pair<int,int>>
#define vll vector<pair<ll,ll>>
#define vvi vector<vector<int>>
#define vvl vector<vector<ll>>
#define vvii vector<vector<pair<int,int>>>
#define vvll vector<vector<pair<ll,ll>>>
#define vst vector<string>
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define mkunique(x) sort(all(x));(x).erase(unique(all(x)),(x).end())
#define fi first
#define se second
#define mp make_pair
#define si(x) int(x.size())
const int mod=998244353,MAX=100005,INF=15<<26;
//高速素因数分解
/**
* Author: chilli, Ramchandra Apte, Noam527, Simon Lindholm
* Date: 2019-04-24
* License: CC0
* Source: https://github.com/RamchandraApte/OmniTemplate/blob/master/modulo.hpp…
* Description: Calculate $a\cdot b\bmod c$ (or $a^b \bmod c$) for $0 \le a, b \le c \le 7.2\cdot 10^{18}$.
* Time: O(1) for \texttt{modmul}, O(\log b) for \texttt{modpow}
* Status: stress-tested, proven correct
* Details:
* This runs ~2x faster than the naive (__int128_t)a * b % M.
* A proof of correctness is in doc/modmul-proof.tex. An earlier version of the proof,
* from when the code used a * b / (long double)M, is in doc/modmul-proof.md.
* The proof assumes that long doubles are implemented as x87 80-bit floats; if they
* are 64-bit, as on e.g. MSVC, the implementation is only valid for
* $0 \le a, b \le c < 2^{52} \approx 4.5 \cdot 10^{15}$.
*/
#pragma once
typedef unsigned long long ull;
ull modmul(ull a, ull b, ull M) {
ll ret = a * b - M * ull(1.L / M * a * b);
return ret + M * (ret < 0) - M * (ret >= (ll)M);
}
ull modpow(ull b, ull e, ull mod) {
ull ans = 1;
for (; e; b = modmul(b, b, mod), e /= 2)
if (e & 1) ans = modmul(ans, b, mod);
return ans;
}
/**
* Author: chilli, SJTU, pajenegod
* Date: 2020-03-04
* License: CC0
* Source: own
* Description: Pollard-rho randomized factorization algorithm. Returns prime
* factors of a number, in arbitrary order (e.g. 2299 -> \{11, 19, 11\}).
* Time: $O(n^{1/4})$, less for numbers with small factors.
* Status: stress-tested
*
* Details: This implementation uses the improvement described here
* (https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm#Variants…), where
* one can accumulate gcd calls by some factor (40 chosen here through
* exhaustive testing). This improves performance by approximately 6-10x
* depending on the inputs and speed of gcd. Benchmark found here:
* (https://ideone.com/nGGD9T)
*
* GCD can be improved by a factor of 1.75x using Binary GCD
* (https://lemire.me/blog/2013/12/26/fastest-way-to-compute-the-greatest-common-divisor/…).
* However, with the gcd accumulation the bottleneck moves from the gcd calls
* to the modmul. As GCD only constitutes ~12% of runtime, speeding it up
* doesn't matter so much.
*
* This code can probably be sped up by using a faster mod mul - potentially
* montgomery reduction on 128 bit integers.
* Alternatively, one can use a quadratic sieve for an asymptotic improvement,
* which starts being faster in practice around 1e13.
*
* Brent's cycle finding algorithm was tested, but doesn't reduce modmul calls
* significantly.
*
* Subtle implementation notes:
* - we operate on residues in [1, n]; modmul can be proven to work for those
* - prd starts off as 2 to handle the case n = 4; it's harmless for other n
* since we're guaranteed that n > 2. (Pollard rho has problems with prime
* powers in general, but all larger ones happen to work.)
* - t starts off as 30 to make the first gcd check come earlier, as an
* optimization for small numbers.
*/
#pragma once
/**
* Author: chilli, c1729, Simon Lindholm
* Date: 2019-03-28
* License: CC0
* Source: Wikipedia, https://miller-rabin.appspot.com
* Description: Deterministic Miller-Rabin primality test.
* Guaranteed to work for numbers up to $7 \cdot 10^{18}$; for larger numbers, use Python and extend A randomly.
* Time: 7 times the complexity of $a^b \mod c$.
* Status: Stress-tested
*/
#pragma once
bool isPrime(ull n) {
if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022},
s = __builtin_ctzll(n-1), d = n >> s;
for (ull a : A) { // ^ count trailing zeroes
ull p = modpow(a%n, d, n), i = s;
while (p != 1 && p != n - 1 && a % n && i--)
p = modmul(p, p, n);
if (p != n-1 && i != s) return 0;
}
return 1;
}
ull pollard(ull n) {
auto f = [n](ull x) { return modmul(x, x, n) + 1; };
ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
while (t++ % 40 || __gcd(prd, n) == 1) {
if (x == y) x = ++i, y = f(x);
if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
x = f(x), y = f(f(y));
}
return __gcd(prd, n);
}
vector<ull> factor(ull n) {
if (n == 1) return {};
if (isPrime(n)) return {n};
ull x = pollard(n);
auto l = factor(x), r = factor(n / x);
l.insert(l.end(), all(r));
return l;
}
vector<int> prime;//i番目の素数
bool is_prime[MAX+1];
void sieve(int n){
for(int i=0;i<=n;i++){
is_prime[i]=true;
}
is_prime[0]=is_prime[1]=false;
for(int i=2;i<=n;i++){
if(is_prime[i]){
prime.push_back(i);
for(int j=2*i;j<=n;j+=i){
is_prime[j] = false;
}
}
}
}
int main(){
std::ifstream in("text.txt");
std::cin.rdbuf(in.rdbuf());
cin.tie(0);
ios::sync_with_stdio(false);
sieve(MAX-2);
int Q;cin>>Q;
while(Q--){
ll N;cin>>N;
ll ans=1;
for(ll p:prime){
ll cn=1;
while(N%p==0){
cn+=2;
N/=p;
}
ans*=cn;
}
if(N>1){
ans*=3;
}
cout<<(ans+1)/2<<"\n";
}
}
这程序好像有点Bug,我给组数据试试?
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3732kb
input:
10 1 2 3 4 5 6 7 8 9 10
output:
1 2 2 3 2 5 2 4 3 5
result:
ok 10 lines
Test #2:
score: 0
Accepted
time: 49ms
memory: 3832kb
input:
2000 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 646969323...
output:
29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 ...
result:
ok 2000 lines
Test #3:
score: 0
Accepted
time: 56ms
memory: 3816kb
input:
2000 1763047095 79735483 1016286871 2864801397 2327774116 2668010360 3469893354 3634459021 1613699068 781737219 574741575 2763134701 1458502604 1822260248 2281150332 2924219311 2493931196 3735904708 158802001 2006921221 729928782 1974841034 727412600 2873393292 1291087179 2741607663 1893408215 29827...
output:
14 5 2 5 23 95 68 14 8 68 203 14 23 32 38 41 8 8 14 2 608 41 158 338 23 41 14 5 14 41 14 203 41 14 17 446 5 53 59 878 2 14 365 203 14 203 2 122 32 95 41 41 5 23 14 41 5 5 14 122 23 203 608 23 41 122 2 14 95 2 68 41 203 14 230 41 68 23 50 14 32 14 8 5 5 5 68 68 122 293 473 5 41 41 14 2 14 14 5 2 122 ...
result:
ok 2000 lines
Extra Test:
score: 0
Extra Test Passed