QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#552356 | #9250. Max GCD | ucup-team296# | AC ✓ | 1508ms | 54632kb | Rust | 35.3kb | 2024-09-07 22:16:02 | 2024-09-07 22:16:06 |
Judging History
answer
//
pub mod solution {
//{"name":"i","group":"Manual","url":"","interactive":false,"timeLimit":2000,"tests":[{"input":"","output":""}],"testType":"single","input":{"type":"stdin","fileName":null,"pattern":null},"output":{"type":"stdout","fileName":null,"pattern":null},"languages":{"java":{"taskClass":"i"}}}
use std::time::Instant;
#[allow(unused)]
use crate::dbg;
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::misc::binary_search::binary_search_first_true;
use crate::algo_lib::misc::rand::Random;
use crate::algo_lib::seg_trees::bottom_up_seg_tree::BottomUpSegTree;
use crate::algo_lib::seg_trees::lazy_seg_tree_max::MaxValNode;
use crate::algo_lib::seg_trees::lazy_seg_tree_max::SegTreeMax;
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Default)]
struct Query {
r: usize,
l: usize,
id: usize,
}
// type ST = SegTreeMax<Query>;
type ST = BottomUpSegTree<MaxValNode<i32>>;
fn stress() {
for tc in 1.. {
dbg!(tc);
let start = Instant::now();
let mut rnd = Random::new(tc);
let n = 150000; //rnd.gen(1..10);
const MAX: usize = 1000000;
let mut a = vec![720720; n]; //rnd.gen_vec(n, 1..MAX);
let mut queries = vec![];
let queries_n = 100000; //rnd.gen(1..10);
for id in 0..queries_n {
let l = rnd.gen(0..n);
let r = rnd.gen(l..n.min(l + 10));
queries.push(Query { l, r, id: id + 1 });
}
let res1 = solve_case(&a, &queries);
dbg!(start.elapsed());
}
}
fn solve(input: &mut Input, out: &mut Output, _test_case: usize) {
let n = input.usize();
let q = input.usize();
let a = input.vec::<usize>(n);
let mut queries = Vec::with_capacity(q);
for i in 0..q {
let l = input.usize();
let r = input.usize();
queries.push(Query {
l: l - 1,
r: r - 1,
id: i + 1,
});
}
let results = solve_case(&a, &queries);
for x in results {
out.println(x);
}
}
fn solve_case(a: &[usize], queries: &[Query]) -> Vec<usize> {
let n = a.len();
let max_a = *a.iter().max().unwrap();
let mut positions = vec![vec![]; max_a + 1];
for i in 0..n {
positions[a[i]].push(i);
}
let mut queries_by_l = vec![vec![]; n];
for q in queries.iter() {
queries_by_l[q.l].push(*q);
}
for i in 0..n {
queries_by_l[i].sort_by_key(|q| q.r);
}
let empty_query = Query { l: 0, r: 0, id: 0 };
let mut seg_tree = ST::new(n.next_power_of_two(), |pos| {
let query = if pos >= n || queries_by_l[pos].is_empty() {
empty_query
} else {
*queries_by_l[pos].last().unwrap()
};
MaxValNode {
max_val: query.r as i32,
pos: pos as i32,
}
});
let mut results = vec![0; queries.len()];
let mut seen_r = vec![n; n];
for gcd in (1..=max_a).rev() {
let mut cur_pos = vec![];
for mult in 1.. {
let value = mult * gcd;
if value > max_a {
break;
}
cur_pos.extend_from_slice(&positions[value]);
}
cur_pos.sort_unstable();
for i in 1..cur_pos.len() {
let mid = cur_pos[i];
let prev = cur_pos[i - 1];
let right_bound = mid + (mid - prev);
let right_pos =
binary_search_first_true(i + 1..cur_pos.len(), |i| cur_pos[i] >= right_bound);
if right_pos == cur_pos.len() {
continue;
}
let right_bound = cur_pos[right_pos];
if seen_r[prev] <= right_bound {
continue;
}
seen_r[prev] = right_bound;
loop {
let node = seg_tree.get(0..prev + 1);
if node.max_val >= right_bound as i32 {
let l_pos = node.pos as usize;
let query = *queries_by_l[l_pos].last().unwrap();
results[query.id - 1] = gcd;
queries_by_l[query.l].pop();
{
let next_query = if queries_by_l[query.l].is_empty() {
empty_query
} else {
*queries_by_l[query.l].last().unwrap()
};
seg_tree.update_point(
query.l,
MaxValNode {
max_val: next_query.r as i32,
pos: query.l as i32,
},
);
}
} else {
break;
}
}
}
}
results
}
pub(crate) fn run(mut input: Input, mut output: Output) -> bool {
solve(&mut input, &mut output, 1);
output.flush();
true
}
}
pub mod algo_lib {
pub mod io {
pub mod input {
use std::fmt::Debug;
use std::io::Read;
use std::marker::PhantomData;
use std::path::Path;
use std::str::FromStr;
pub struct Input {
input: Box<dyn Read>,
buf: Vec<u8>,
at: usize,
buf_read: usize,
}
macro_rules! read_integer_fun {
($t:ident) => {
#[allow(unused)]
pub fn $t(&mut self) -> $t {
self.read_integer()
}
};
}
impl Input {
const DEFAULT_BUF_SIZE: usize = 4096;
///
/// Using with stdin:
/// ```no_run
/// use algo_lib::io::input::Input;
/// let stdin = std::io::stdin();
/// let input = Input::new(Box::new(stdin));
/// ```
///
/// For read files use ``new_file`` instead.
///
///
pub fn new(input: Box<dyn Read>) -> Self {
Self {
input,
buf: vec![0; Self::DEFAULT_BUF_SIZE],
at: 0,
buf_read: 0,
}
}
pub fn new_stdin() -> Self {
let stdin = std::io::stdin();
Self::new(Box::new(stdin))
}
pub fn new_file<P: AsRef<Path>>(path: P) -> Self {
let file = std::fs::File::open(&path)
.unwrap_or_else(|_| panic!("Can't open file: {:?}", path.as_ref().as_os_str()));
Self::new(Box::new(file))
}
pub fn new_with_size(input: Box<dyn Read>, buf_size: usize) -> Self {
Self {
input,
buf: vec![0; buf_size],
at: 0,
buf_read: 0,
}
}
pub fn new_file_with_size<P: AsRef<Path>>(path: P, buf_size: usize) -> Self {
let file = std::fs::File::open(&path)
.unwrap_or_else(|_| panic!("Can't open file: {:?}", path.as_ref().as_os_str()));
Self::new_with_size(Box::new(file), buf_size)
}
pub fn get(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
self.at += 1;
Some(res)
} else {
None
}
}
pub fn peek(&mut self) -> Option<u8> {
if self.refill_buffer() {
Some(self.buf[self.at])
} else {
None
}
}
pub fn skip_whitespace(&mut self) {
while let Some(b) = self.peek() {
if !char::from(b).is_whitespace() {
return;
}
self.get();
}
}
pub fn next_token(&mut self) -> Option<Vec<u8>> {
self.skip_whitespace();
let mut res = Vec::new();
while let Some(c) = self.get() {
if char::from(c).is_whitespace() {
break;
}
res.push(c);
}
if res.is_empty() {
None
} else {
Some(res)
}
}
//noinspection RsSelfConvention
pub fn is_exhausted(&mut self) -> bool {
self.peek().is_none()
}
pub fn has_more_elements(&mut self) -> bool {
!self.is_exhausted()
}
pub fn read<T: Readable>(&mut self) -> T {
T::read(self)
}
pub fn vec<T: Readable>(&mut self, size: usize) -> Vec<T> {
let mut res = Vec::with_capacity(size);
for _ in 0usize..size {
res.push(self.read());
}
res
}
pub fn string_vec(&mut self, size: usize) -> Vec<Vec<u8>> {
let mut res = Vec::with_capacity(size);
for _ in 0usize..size {
res.push(self.string());
}
res
}
pub fn read_line(&mut self) -> String {
let mut res = String::new();
while let Some(c) = self.get() {
if c == b'\n' {
break;
}
if c == b'\r' {
if self.peek() == Some(b'\n') {
self.get();
}
break;
}
res.push(c.into());
}
res
}
#[allow(clippy::should_implement_trait)]
pub fn into_iter<T: Readable>(self) -> InputIterator<T> {
InputIterator {
input: self,
phantom: Default::default(),
}
}
fn read_integer<T: FromStr + Debug>(&mut self) -> T
where
<T as FromStr>::Err: Debug,
{
let res = self.read_string();
res.parse::<T>().unwrap()
}
fn read_string(&mut self) -> String {
match self.next_token() {
None => {
panic!("Input exhausted");
}
Some(res) => unsafe { String::from_utf8_unchecked(res) },
}
}
pub fn string_as_string(&mut self) -> String {
self.read_string()
}
pub fn string(&mut self) -> Vec<u8> {
self.read_string().into_bytes()
}
fn read_char(&mut self) -> char {
self.skip_whitespace();
self.get().unwrap().into()
}
fn read_float(&mut self) -> f64 {
self.read_string().parse().unwrap()
}
pub fn f64(&mut self) -> f64 {
self.read_float()
}
fn refill_buffer(&mut self) -> bool {
if self.at == self.buf_read {
self.at = 0;
self.buf_read = self.input.read(&mut self.buf).unwrap();
self.buf_read != 0
} else {
true
}
}
read_integer_fun!(i32);
read_integer_fun!(i64);
read_integer_fun!(i128);
read_integer_fun!(u32);
read_integer_fun!(u64);
read_integer_fun!(usize);
}
pub trait Readable {
fn read(input: &mut Input) -> Self;
}
impl Readable for String {
fn read(input: &mut Input) -> Self {
input.read_string()
}
}
impl Readable for char {
fn read(input: &mut Input) -> Self {
input.read_char()
}
}
impl Readable for f64 {
fn read(input: &mut Input) -> Self {
input.read_string().parse().unwrap()
}
}
impl Readable for f32 {
fn read(input: &mut Input) -> Self {
input.read_string().parse().unwrap()
}
}
impl<T: Readable> Readable for Vec<T> {
fn read(input: &mut Input) -> Self {
let size = input.read();
input.vec(size)
}
}
pub struct InputIterator<T: Readable> {
input: Input,
phantom: PhantomData<T>,
}
impl<T: Readable> Iterator for InputIterator<T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
self.input.skip_whitespace();
self.input.peek().map(|_| self.input.read())
}
}
macro_rules! read_integer {
($t:ident) => {
impl Readable for $t {
fn read(input: &mut Input) -> Self {
input.read_integer()
}
}
};
}
read_integer!(i8);
read_integer!(i16);
read_integer!(i32);
read_integer!(i64);
read_integer!(i128);
read_integer!(isize);
read_integer!(u8);
read_integer!(u16);
read_integer!(u32);
read_integer!(u64);
read_integer!(u128);
read_integer!(usize);
}
pub mod output {
use std::io::Write;
pub struct Output {
output: Box<dyn Write>,
buf: Vec<u8>,
at: usize,
auto_flush: bool,
}
impl Output {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn new(output: Box<dyn Write>) -> Self {
Self {
output,
buf: vec![0; Self::DEFAULT_BUF_SIZE],
at: 0,
auto_flush: false,
}
}
pub fn new_stdout() -> Self {
let stdout = std::io::stdout();
Self::new(Box::new(stdout))
}
pub fn new_file(path: impl AsRef<std::path::Path>) -> Self {
let file = std::fs::File::create(path).unwrap();
Self::new(Box::new(file))
}
pub fn new_with_auto_flush(output: Box<dyn Write>) -> Self {
Self {
output,
buf: vec![0; Self::DEFAULT_BUF_SIZE],
at: 0,
auto_flush: true,
}
}
pub fn flush(&mut self) {
if self.at != 0 {
self.output.write_all(&self.buf[..self.at]).unwrap();
self.at = 0;
self.output.flush().expect("Couldn't flush output");
}
}
pub fn print<T: Writable>(&mut self, s: T) {
s.write(self);
}
pub fn println<T: Writable>(&mut self, s: T) {
s.write(self);
self.put(b'\n');
}
pub fn put(&mut self, b: u8) {
self.buf[self.at] = b;
self.at += 1;
if self.at == self.buf.len() {
self.flush();
}
}
pub fn maybe_flush(&mut self) {
if self.auto_flush {
self.flush();
}
}
pub fn print_per_line<T: Writable>(&mut self, arg: &[T]) {
for i in arg {
i.write(self);
self.put(b'\n');
}
}
pub fn print_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
let mut first = true;
for e in iter {
if first {
first = false;
} else {
self.put(b' ');
}
e.write(self);
}
}
pub fn print_iter_ref<'a, T: 'a + Writable, I: Iterator<Item = &'a T>>(&mut self, iter: I) {
let mut first = true;
for e in iter {
if first {
first = false;
} else {
self.put(b' ');
}
e.write(self);
}
}
}
impl Write for Output {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
let mut start = 0usize;
let mut rem = buf.len();
while rem > 0 {
let len = (self.buf.len() - self.at).min(rem);
self.buf[self.at..self.at + len].copy_from_slice(&buf[start..start + len]);
self.at += len;
if self.at == self.buf.len() {
self.flush();
}
start += len;
rem -= len;
}
if self.auto_flush {
self.flush();
}
Ok(buf.len())
}
fn flush(&mut self) -> std::io::Result<()> {
self.flush();
Ok(())
}
}
pub trait Writable {
fn write(&self, output: &mut Output);
}
impl Writable for &str {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for String {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for char {
fn write(&self, output: &mut Output) {
output.put(*self as u8);
}
}
impl<T: Writable> Writable for [T] {
fn write(&self, output: &mut Output) {
output.print_iter_ref(self.iter());
}
}
impl<T: Writable> Writable for Vec<T> {
fn write(&self, output: &mut Output) {
self[..].write(output);
}
}
macro_rules! write_to_string {
($t:ident) => {
impl Writable for $t {
fn write(&self, output: &mut Output) {
self.to_string().write(output);
}
}
};
}
write_to_string!(u8);
write_to_string!(u16);
write_to_string!(u32);
write_to_string!(u64);
write_to_string!(u128);
write_to_string!(usize);
write_to_string!(i8);
write_to_string!(i16);
write_to_string!(i32);
write_to_string!(i64);
write_to_string!(i128);
write_to_string!(isize);
write_to_string!(f32);
write_to_string!(f64);
impl<T: Writable, U: Writable> Writable for (T, U) {
fn write(&self, output: &mut Output) {
self.0.write(output);
output.put(b' ');
self.1.write(output);
}
}
impl<T: Writable, U: Writable, V: Writable> Writable for (T, U, V) {
fn write(&self, output: &mut Output) {
self.0.write(output);
output.put(b' ');
self.1.write(output);
output.put(b' ');
self.2.write(output);
}
}
}
}
pub mod misc {
pub mod binary_search {
use crate::algo_lib::misc::num_traits::Number;
use std::ops::Range;
pub fn binary_search_first_true<T>(range: Range<T>, mut f: impl FnMut(T) -> bool) -> T
where
T: Number,
{
// we can't store [range.start - 1] into [left], because it could overflow
let mut left_plus_one = range.start;
let mut right = range.end;
while right > left_plus_one {
let mid = left_plus_one + (right - left_plus_one) / T::TWO;
if f(mid) {
right = mid;
} else {
left_plus_one = mid + T::ONE;
}
}
right
}
pub fn binary_search_last_true<T>(range: Range<T>, mut f: impl FnMut(T) -> bool) -> Option<T>
where
T: Number,
{
let first_false = binary_search_first_true(range.clone(), |x| !f(x));
if first_false == range.start {
None
} else {
Some(first_false - T::ONE)
}
}
#[test]
fn simple_stress() {
const N: usize = 50;
for n in 1..N {
for cnt_false in 0..=n {
let mut a = vec![false; cnt_false];
a.resize(n, true);
let mut max_f_calls = ((n + 1) as f64).log2().ceil() as i32;
let f_is_true = |id: usize| -> bool {
max_f_calls -= 1;
assert!(max_f_calls >= 0);
a[id]
};
let result = binary_search_first_true(0..n, f_is_true);
assert_eq!(result, cnt_false);
}
}
}
}
pub mod dbg_macro {
#[macro_export]
#[allow(unused_macros)]
macro_rules! dbg {
($first_val:expr, $($val:expr),+ $(,)?) => {
eprint!("[{}:{}] {} = {:?}",
file!(), line!(), stringify!($first_val), &$first_val);
($(eprint!(", {} = {:?}", stringify!($val), &$val)),+,);
eprintln!();
};
($first_val:expr) => {
eprintln!("[{}:{}] {} = {:?}",
file!(), line!(), stringify!($first_val), &$first_val)
};
}
}
pub mod gen_vector {
pub fn gen_vec<T>(n: usize, f: impl FnMut(usize) -> T) -> Vec<T> {
(0..n).map(f).collect()
}
}
pub mod num_traits {
use std::cmp::Ordering;
use std::fmt::Debug;
use std::ops::Add;
use std::ops::AddAssign;
use std::ops::Div;
use std::ops::DivAssign;
use std::ops::Mul;
use std::ops::MulAssign;
use std::ops::Sub;
use std::ops::SubAssign;
pub trait HasConstants<T> {
const MAX: T;
const MIN: T;
const ZERO: T;
const ONE: T;
const TWO: T;
}
pub trait ConvSimple<T> {
fn from_i32(val: i32) -> T;
fn to_i32(self) -> i32;
fn to_f64(self) -> f64;
}
pub trait Signum {
fn signum(&self) -> i32;
}
pub trait Number:
Copy
+ Add<Output = Self>
+ AddAssign
+ Sub<Output = Self>
+ SubAssign
+ Mul<Output = Self>
+ MulAssign
+ Div<Output = Self>
+ DivAssign
+ PartialOrd
+ PartialEq
+ HasConstants<Self>
+ Default
+ Debug
+ Sized
+ ConvSimple<Self>
{
}
impl<
T: Copy
+ Add<Output = Self>
+ AddAssign
+ Sub<Output = Self>
+ SubAssign
+ Mul<Output = Self>
+ MulAssign
+ Div<Output = Self>
+ DivAssign
+ PartialOrd
+ PartialEq
+ HasConstants<Self>
+ Default
+ Debug
+ Sized
+ ConvSimple<Self>,
> Number for T
{
}
macro_rules! has_constants_impl {
($t: ident) => {
impl HasConstants<$t> for $t {
// TODO: remove `std` for new rust version..
const MAX: $t = std::$t::MAX;
const MIN: $t = std::$t::MIN;
const ZERO: $t = 0;
const ONE: $t = 1;
const TWO: $t = 2;
}
impl ConvSimple<$t> for $t {
fn from_i32(val: i32) -> $t {
val as $t
}
fn to_i32(self) -> i32 {
self as i32
}
fn to_f64(self) -> f64 {
self as f64
}
}
};
}
has_constants_impl!(i32);
has_constants_impl!(i64);
has_constants_impl!(i128);
has_constants_impl!(u32);
has_constants_impl!(u64);
has_constants_impl!(u128);
has_constants_impl!(usize);
has_constants_impl!(u8);
impl ConvSimple<Self> for f64 {
fn from_i32(val: i32) -> Self {
val as f64
}
fn to_i32(self) -> i32 {
self as i32
}
fn to_f64(self) -> f64 {
self
}
}
impl HasConstants<Self> for f64 {
const MAX: Self = Self::MAX;
const MIN: Self = -Self::MAX;
const ZERO: Self = 0.0;
const ONE: Self = 1.0;
const TWO: Self = 2.0;
}
impl<T: Number + Ord> Signum for T {
fn signum(&self) -> i32 {
match self.cmp(&T::ZERO) {
Ordering::Greater => 1,
Ordering::Less => -1,
Ordering::Equal => 0,
}
}
}
}
pub mod rand {
use crate::algo_lib::misc::gen_vector::gen_vec;
use crate::algo_lib::misc::num_traits::Number;
use std::ops::Range;
use std::time::SystemTime;
use std::time::UNIX_EPOCH;
#[allow(dead_code)]
pub struct Random {
state: u64,
}
impl Random {
pub fn gen_u64(&mut self) -> u64 {
let mut x = self.state;
x ^= x << 13;
x ^= x >> 7;
x ^= x << 17;
self.state = x;
x
}
#[allow(dead_code)]
pub fn next_in_range(&mut self, from: usize, to: usize) -> usize {
assert!(from < to);
(from as u64 + self.gen_u64() % ((to - from) as u64)) as usize
}
pub fn gen_index<T>(&mut self, a: &[T]) -> usize {
self.gen(0..a.len())
}
#[allow(dead_code)]
#[inline(always)]
pub fn gen_double(&mut self) -> f64 {
(self.gen_u64() as f64) / (std::usize::MAX as f64)
}
#[allow(dead_code)]
pub fn new(seed: u64) -> Self {
let state = if seed == 0 { 787788 } else { seed };
Self { state }
}
pub fn new_time_seed() -> Self {
let time = SystemTime::now();
let seed = (time.duration_since(UNIX_EPOCH).unwrap().as_nanos() % 1_000_000_000) as u64;
if seed == 0 {
Self::new(787788)
} else {
Self::new(seed)
}
}
#[allow(dead_code)]
pub fn gen_permutation(&mut self, n: usize) -> Vec<usize> {
let mut result: Vec<_> = (0..n).collect();
for i in 0..n {
let idx = self.next_in_range(0, i + 1);
result.swap(i, idx);
}
result
}
pub fn shuffle<T>(&mut self, a: &mut [T]) {
for i in 1..a.len() {
a.swap(i, self.gen(0..i + 1));
}
}
pub fn gen<T>(&mut self, range: Range<T>) -> T
where
T: Number,
{
let from = T::to_i32(range.start);
let to = T::to_i32(range.end);
assert!(from < to);
let len = (to - from) as usize;
T::from_i32(self.next_in_range(0, len) as i32 + from)
}
pub fn gen_vec<T>(&mut self, n: usize, range: Range<T>) -> Vec<T>
where
T: Number,
{
gen_vec(n, |_| self.gen(range.clone()))
}
pub fn gen_nonempty_range(&mut self, n: usize) -> Range<usize> {
let x = self.gen(0..n);
let y = self.gen(0..n);
if x <= y {
x..y + 1
} else {
y..x + 1
}
}
pub fn gen_bool(&mut self) -> bool {
self.gen(0..2) == 0
}
}
}
}
pub mod seg_trees {
pub mod bottom_up_seg_tree {
use std::ops::Range;
use crate::algo_lib::seg_trees::seg_tree_trait::SegTreeNode;
pub struct BottomUpSegTree<Node: SegTreeNode> {
n: usize,
nodes: Vec<Node>,
context: Node::Context,
}
impl<Node: SegTreeNode> BottomUpSegTree<Node> {
pub fn new(start_n: usize, f: impl Fn(usize) -> Node) -> Self
where
Node::Context: Default,
{
let n = start_n.next_power_of_two();
let mut res = Self {
n,
nodes: vec![Node::default(); 2 * n],
context: Default::default(),
};
for i in 0..start_n {
res.nodes[n + i] = f(i);
}
for i in (1..n).rev() {
res.nodes[i] = Node::join_nodes(&res.nodes[2 * i], &res.nodes[2 * i + 1], &res.context);
}
res
}
pub fn update_point(&mut self, pos: usize, v: Node) {
let mut i = pos + self.n;
self.nodes[i] = v;
while i > 1 {
i /= 2;
self.nodes[i] =
Node::join_nodes(&self.nodes[2 * i], &self.nodes[2 * i + 1], &self.context);
}
}
pub fn get_root(&self) -> &Node {
&self.nodes[1]
}
pub fn get(&self, range: Range<usize>) -> Node {
let mut l = range.start + self.n;
let mut r = range.end + self.n;
let mut res_l = Node::default();
let mut res_r = Node::default();
while l < r {
if l & 1 != 0 {
res_l = Node::join_nodes(&res_l, &self.nodes[l], &self.context);
l += 1;
}
if r & 1 != 0 {
r -= 1;
res_r = Node::join_nodes(&self.nodes[r], &res_r, &self.context);
}
l /= 2;
r /= 2;
}
Node::join_nodes(&res_l, &res_r, &self.context)
}
}
}
pub mod lazy_seg_tree {
use std::ops::Range;
use crate::algo_lib::seg_trees::seg_tree_trait::SegTreeNode;
///
/// Segment Tree
///
#[allow(unused)]
#[derive(Clone)]
pub struct SegTree<T: SegTreeNode> {
n: usize,
tree: Vec<T>,
updates_to_push: Vec<Option<T::Update>>,
context: T::Context,
right_nodes: Vec<usize>,
}
#[allow(unused)]
impl<T: SegTreeNode> SegTree<T> {
fn pull(&mut self, v: usize, vr: usize) {
self.tree[v] = T::join_nodes(&self.tree[v + 1], &self.tree[vr], &self.context);
}
fn build(&mut self, v: usize, l: usize, r: usize, init_val: &T) {
if l + 1 == r {
self.tree[v] = init_val.clone();
} else {
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
self.build(v + 1, l, m, init_val);
self.build(vr, m, r, init_val);
self.pull(v, vr);
}
}
fn push(&mut self, v: usize, l: usize, r: usize) {
let update = self.updates_to_push[v].clone();
self.updates_to_push[v] = None;
match update {
None => {}
Some(update) => {
let m = (l + r) >> 1;
self.apply_update(v + 1, &update, m - l == 1);
self.apply_update(v + ((r - l) & !1), &update, r - m == 1);
}
}
}
fn get_(&mut self, v: usize, l: usize, r: usize, ql: usize, qr: usize) -> T {
assert!(qr >= l);
assert!(ql < r);
if ql <= l && r <= qr {
return self.tree[v].clone();
}
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
self.push(v, l, r);
let res = if ql >= m {
self.get_(vr, m, r, ql, qr)
} else if qr <= m {
self.get_(v + 1, l, m, ql, qr)
} else {
T::join_nodes(
&self.get_(v + 1, l, m, ql, qr),
&self.get_(vr, m, r, ql, qr),
&self.context,
)
};
self.pull(v, vr);
res
}
fn visit_(
&mut self,
v: usize,
l: usize,
r: usize,
ql: usize,
qr: usize,
f: &mut impl FnMut(&T),
) {
assert!(qr >= l);
assert!(ql < r);
if ql <= l && r <= qr {
f(&self.tree[v]);
return;
}
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
self.push(v, l, r);
if ql >= m {
self.visit_(vr, m, r, ql, qr, f);
} else if qr <= m {
self.visit_(v + 1, l, m, ql, qr, f)
} else {
self.visit_(v + 1, l, m, ql, qr, f);
self.visit_(vr, m, r, ql, qr, f);
};
self.pull(v, vr);
}
fn join_updates(current: &mut Option<T::Update>, add: &T::Update) {
match current {
None => *current = Some(add.clone()),
Some(current) => T::join_updates(current, add),
};
}
fn apply_update(&mut self, v: usize, update: &T::Update, is_leaf: bool) {
T::apply_update(&mut self.tree[v], update);
if !is_leaf {
Self::join_updates(&mut self.updates_to_push[v], update);
}
}
fn modify_(&mut self, v: usize, l: usize, r: usize, ql: usize, qr: usize, update: &T::Update) {
assert!(qr >= l);
assert!(ql < r);
if ql <= l && r <= qr {
self.apply_update(v, update, r - l == 1);
return;
}
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
self.push(v, l, r);
if ql >= m {
self.modify_(vr, m, r, ql, qr, update);
} else if qr <= m {
self.modify_(v + 1, l, m, ql, qr, update);
} else {
self.modify_(v + 1, l, m, ql, qr, update);
self.modify_(vr, m, r, ql, qr, update);
};
self.pull(v, vr);
}
pub fn update(&mut self, range: Range<usize>, update: T::Update) {
if range.is_empty() {
return;
}
assert!(!range.is_empty());
self.modify_(0, 0, self.n, range.start, range.end, &update);
}
pub fn update_point(&mut self, pos: usize, new_node: T) {
let mut l = 0;
let mut r = self.n;
let mut v: usize = 0;
let mut to_pull = vec![];
while r - l > 1 {
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
self.push(v, l, r);
to_pull.push((v, vr));
if pos < m {
r = m;
v = v + 1;
} else {
l = m;
v = vr;
}
}
self.tree[v] = new_node;
for (v, vr) in to_pull.into_iter().rev() {
self.pull(v, vr);
}
}
fn find_last_true_(
&mut self,
v: usize,
l: usize,
r: usize,
range: Range<usize>,
f: &impl Fn(&T) -> bool,
) -> Option<usize> {
if range.start >= r || l >= range.end {
return None;
}
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
if range.start <= l && r <= range.end {
if !f(&self.tree[v]) {
return None;
}
if r - l == 1 {
return Some(l);
}
}
self.push(v, l, r);
if let Some(res) = self.find_last_true_(vr, m, r, range.clone(), f) {
Some(res)
} else {
self.find_last_true_(v + 1, l, m, range, f)
}
}
// returns position
pub fn find_last_true(&mut self, range: Range<usize>, f: impl Fn(&T) -> bool) -> Option<usize> {
self.find_last_true_(0, 0, self.n, range, &f)
}
pub fn get(&mut self, range: Range<usize>) -> T {
if range.is_empty() {
return T::default();
}
self.get_(0, 0, self.n, range.start, range.end)
}
pub fn visit(&mut self, range: Range<usize>, f: &mut impl FnMut(&T)) {
if range.is_empty() {
return;
}
self.visit_(0, 0, self.n, range.start, range.end, f);
}
pub fn new_with_context(n: usize, f: impl Fn(usize) -> T, context: T::Context) -> Self {
assert!(n > 0);
let tree = vec![T::default(); 2 * n - 1];
let updates_to_push = vec![None; 2 * n - 1];
let mut res = SegTree {
n,
tree,
updates_to_push,
context,
right_nodes: vec![],
};
res.build_f(0, 0, n, &f);
res
}
pub fn new(n: usize, f: impl Fn(usize) -> T) -> Self
where
T::Context: Default,
{
assert!(n > 0);
let tree = vec![T::default(); 2 * n - 1];
let updates_to_push = vec![None; 2 * n - 1];
let mut res = SegTree {
n,
tree,
updates_to_push,
context: T::Context::default(),
right_nodes: vec![],
};
res.build_f(0, 0, n, &f);
res
}
fn build_f(&mut self, v: usize, l: usize, r: usize, f: &impl Fn(usize) -> T) {
if l + 1 == r {
self.tree[v] = f(l);
} else {
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
self.build_f(v + 1, l, m, f);
self.build_f(vr, m, r, f);
self.pull(v, vr);
}
}
pub fn len(&self) -> usize {
self.n
}
pub fn expert_get_node(&self, node: usize) -> &T {
&self.tree[node]
}
pub fn expert_get_left_node(&self, node: usize) -> usize {
node + 1
}
fn build_right_nodes(&mut self, v: usize, l: usize, r: usize) {
if l + 1 == r {
self.right_nodes.push(0);
} else {
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
self.right_nodes.push(vr);
self.build_right_nodes(v + 1, l, m);
self.build_right_nodes(vr, m, r);
}
}
// TODO: shouldn't be mut
pub fn expert_get_right_node(&mut self, node: usize) -> usize {
if self.right_nodes.is_empty() {
self.build_right_nodes(0, 0, self.n);
}
self.right_nodes[node]
}
// Used for Kinetic Seg Tree
pub fn expert_rebuild_nodes(&mut self, should_rebuild: impl Fn(&T, &T::Context) -> bool) {
self.expert_rebuild_nodes_(0, 0, self.n, &should_rebuild);
}
fn expert_rebuild_nodes_(
&mut self,
v: usize,
l: usize,
r: usize,
should_rebuild: &impl Fn(&T, &T::Context) -> bool,
) {
if r - l <= 1 || !should_rebuild(&self.tree[v], &self.context) {
return;
}
let m = (l + r) >> 1;
let vr = v + ((m - l) << 1);
self.push(v, l, r);
self.expert_rebuild_nodes_(v + 1, l, m, should_rebuild);
self.expert_rebuild_nodes_(vr, m, r, should_rebuild);
self.pull(v, vr);
}
pub fn update_context(&mut self, f: impl Fn(&mut T::Context)) {
f(&mut self.context);
}
pub fn get_context(&self) -> &T::Context {
&self.context
}
}
}
pub mod lazy_seg_tree_max {
use crate::algo_lib::seg_trees::lazy_seg_tree::SegTree;
use crate::algo_lib::seg_trees::seg_tree_trait::SegTreeNode;
#[derive(Clone, Default, Copy, Debug)]
pub struct MaxValNode<T> {
pub max_val: T,
pub pos: i32,
}
impl<T> SegTreeNode for MaxValNode<T>
where
T: Default + Clone + Ord + Copy,
{
#[allow(unused)]
fn join_nodes(l: &Self, r: &Self, context: &()) -> Self {
if l.max_val > r.max_val {
*l
} else {
*r
}
}
fn apply_update(node: &mut Self, update: &Self::Update) {
node.max_val = *update;
}
#[allow(unused)]
fn join_updates(current: &mut Self::Update, add: &Self::Update) {
*current = *add;
}
type Update = T;
type Context = ();
}
pub type SegTreeMax<T> = SegTree<MaxValNode<T>>;
}
pub mod seg_tree_trait {
pub trait SegTreeNode: Clone + Default {
fn join_nodes(l: &Self, r: &Self, context: &Self::Context) -> Self;
fn apply_update(node: &mut Self, update: &Self::Update);
fn join_updates(current: &mut Self::Update, add: &Self::Update);
type Update: Clone;
type Context;
}
}
}
}
fn main() {
let input = algo_lib::io::input::Input::new_stdin();
let mut output = algo_lib::io::output::Output::new_stdout();
crate::solution::run(input, output);
}
这程序好像有点Bug,我给组数据试试?
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 2140kb
input:
8 8 8 24 4 6 6 7 3 3 1 5 2 6 3 7 5 8 4 8 1 3 2 5 3 8
output:
4 2 3 1 3 4 2 3
result:
ok 8 tokens
Test #2:
score: 0
Accepted
time: 1508ms
memory: 48948kb
input:
150000 100000 982800 554400 665280 982800 997920 720720 786240 831600 997920 982800 786240 982800 942480 831600 887040 665280 831600 960960 786240 982800 786240 942480 665280 831600 942480 665280 982800 960960 960960 997920 720720 960960 960960 665280 982800 665280 982800 942480 786240 997920 554400...
output:
997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920 997920...
result:
ok 100000 tokens
Test #3:
score: 0
Accepted
time: 328ms
memory: 54632kb
input:
150000 100000 716844 340255 836453 422971 389959 56166 837543 724949 336855 860372 579302 812222 849774 845846 999555 136871 624002 100905 529143 187215 582397 95964 363772 534762 258007 132867 753342 300681 770692 654005 397230 267857 21953 347450 248776 397101 768172 868404 612257 885884 270063 45...
output:
962054 997805 890994 997805 302526 997805 997805 977481 977481 962054 997805 977481 187969 962054 389779 753782 385422 267290 299894 219398 73821 400069 997805 722583 58309 962054 977481 997805 963049 997805 413562 994191 997805 426490 997805 962054 962054 753782 484075 997805 994191 299879 761650 7...
result:
ok 100000 tokens
Test #4:
score: 0
Accepted
time: 811ms
memory: 49692kb
input:
150000 100000 956340 841620 591480 585312 733440 381480 918540 326160 154980 826272 873054 789264 642330 261576 504450 328500 462720 872040 463590 387720 240768 31320 774090 997668 380250 496692 858420 294060 286000 896448 987690 780216 945744 159432 825804 776880 946110 673530 583596 547400 335880 ...
output:
999999 999999 957720 999999 999460 952770 999432 999999 999999 999999 999999 999999 999999 999999 991380 999960 999999 999999 384480 999999 999432 999999 999999 994410 999999 999120 999999 999680 999460 999999 997704 151470 999999 999999 999999 999960 232190 999804 999960 999936 999460 998424 999999...
result:
ok 100000 tokens
Test #5:
score: 0
Accepted
time: 66ms
memory: 25184kb
input:
200 100 489060 226800 933660 924000 939120 291060 702240 913920 979440 778050 505440 611520 837900 662400 207900 829920 814320 194040 991200 463320 638400 288288 544320 609840 425040 855360 859320 327600 772200 918000 502320 693000 841500 502320 617760 371280 823680 900900 757680 823680 710640 59976...
output:
207900 823680 823680 131670 823680 19950 137700 55440 823680 823680 823680 48600 207900 207900 823680 823680 137700 231840 5796 1260 823680 231840 111384 540960 131670 823680 823680 207900 27720 823680 205920 231840 32760 207900 231840 207900 39312 207900 0 207900 151200 823680 31680 231840 207900 2...
result:
ok 100 tokens
Test #6:
score: 0
Accepted
time: 62ms
memory: 25652kb
input:
200 100 571200 926640 748800 936000 561600 601920 820800 571200 423360 514800 428400 995904 899640 899640 982080 993600 730800 803880 914760 687960 556920 458640 950400 884520 686400 873180 514800 411840 463680 327600 811440 875160 974400 485100 529200 963900 491400 785400 952560 611520 823680 68544...
output:
963900 963900 81900 237600 792000 85680 71400 458640 229320 212520 963900 4620 317520 52920 963900 383040 35700 52920 57120 383040 51480 914760 137280 963900 766080 21420 237600 85680 32760 317520 914760 914760 914760 191520 963900 154440 963900 963900 237600 963900 237600 766080 33600 963900 914760...
result:
ok 100 tokens
Test #7:
score: 0
Accepted
time: 1167ms
memory: 49488kb
input:
150000 100000 669240 987000 959400 760320 619080 715680 651000 297000 611520 816480 529200 936000 660660 856800 993720 678300 316800 951048 716040 748800 619080 939120 733590 974610 382200 870240 750750 423360 846300 750120 907200 355320 844800 582120 547200 986580 792792 291060 989520 696150 546000...
output:
999600 999600 999600 999600 999600 992160 999600 999600 999600 999600 999600 999600 999600 995904 997920 999600 999600 999600 999600 999600 999600 999600 999180 999600 999600 999600 999600 999180 999600 999600 999600 999600 999600 999600 999600 999600 999600 999600 999600 999600 999600 999600 999600...
result:
ok 100000 tokens
Extra Test:
score: 0
Extra Test Passed