QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#495773 | #9141. Array Spread | ucup-team180# | TL | 2497ms | 4128kb | C++17 | 54.3kb | 2024-07-27 23:34:15 | 2024-07-27 23:34:15 |
Judging History
你现在查看的是最新测评结果
- [2024-09-18 18:58:44]
- hack成功,自动添加数据
- (/hack/840)
- [2024-09-18 18:53:02]
- hack成功,自动添加数据
- (/hack/839)
- [2024-07-29 03:53:23]
- hack成功,自动添加数据
- (/hack/753)
- [2024-07-29 03:51:16]
- hack成功,自动添加数据
- (/hack/752)
- [2024-07-29 03:50:24]
- hack成功,自动添加数据
- (/hack/751)
- [2024-07-29 03:48:52]
- hack成功,自动添加数据
- (/hack/750)
- [2024-07-27 23:34:15]
- 提交
answer
#pragma region Macros
#ifdef noimi
#pragma comment(linker, "/stack:256000000")
#include "my_template.hpp"
#else
// #pragma GCC target("avx2")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <immintrin.h>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <variant>
#ifdef noimi
#define oj_local(a, b) b
#else
#define oj_local(a, b) a
#endif
#define LOCAL if(oj_local(0, 1))
#define OJ if(oj_local(1, 0))
using namespace std;
using ll = long long;
using ull = unsigned long long int;
using i128 = __int128_t;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using ld = long double;
template <typename T> using vc = vector<T>;
template <typename T> using vvc = vector<vc<T>>;
template <typename T> using vvvc = vector<vvc<T>>;
using vi = vc<int>;
using vl = vc<ll>;
using vpi = vc<pii>;
using vpl = vc<pll>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;
template <typename T> int si(const T &x) { return x.size(); }
template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); }
template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); }
vi iota(int n) {
vi a(n);
return iota(a.begin(), a.end(), 0), a;
}
template <typename T> vi iota(const vector<T> &a, bool greater = false) {
vi res(a.size());
iota(res.begin(), res.end(), 0);
sort(res.begin(), res.end(), [&](int i, int j) {
if(greater) return a[i] > a[j];
return a[i] < a[j];
});
return res;
}
// macros
#define overload5(a, b, c, d, e, name, ...) name
#define overload4(a, b, c, d, name, ...) name
#define endl '\n'
#define REP0(n) for(ll jidlsjf = 0; jidlsjf < n; ++jidlsjf)
#define REP1(i, n) for(ll i = 0; i < (n); ++i)
#define REP2(i, a, b) for(ll i = (a); i < (b); ++i)
#define REP3(i, a, b, c) for(ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)
#define per0(n) for(int jidlsjf = 0; jidlsjf < (n); ++jidlsjf)
#define per1(i, n) for(ll i = (n)-1; i >= 0; --i)
#define per2(i, a, b) for(ll i = (a)-1; i >= b; --i)
#define per3(i, a, b, c) for(ll i = (a)-1; i >= (b); i -= (c))
#define per(...) overload4(__VA_ARGS__, per3, per2, per1, per0)(__VA_ARGS__)
#define fore0(a) rep(a.size())
#define fore1(i, a) for(auto &&i : a)
#define fore2(a, b, v) for(auto &&[a, b] : v)
#define fore3(a, b, c, v) for(auto &&[a, b, c] : v)
#define fore4(a, b, c, d, v) for(auto &&[a, b, c, d] : v)
#define fore(...) overload5(__VA_ARGS__, fore4, fore3, fore2, fore1, fore0)(__VA_ARGS__)
#define setbits(j, n) for(ll iiiii = (n), j = lowbit(iiiii); iiiii; iiiii ^= 1 << j, j = lowbit(iiiii))
#define perm(v) for(bool permrepflag = true; (permrepflag ? exchange(permrepflag, false) : next_permutation(all(v)));)
#define fi first
#define se second
#define pb push_back
#define ppb pop_back
#define ppf pop_front
#define eb emplace_back
#define drop(s) cout << #s << endl, exit(0)
#define si(c) (int)(c).size()
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define lbg(c, x) distance((c).begin(), lower_bound(all(c), (x), greater{}))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define ubg(c, x) distance((c).begin(), upper_bound(all(c), (x), greater{}))
#define rng(v, l, r) v.begin() + (l), v.begin() + (r)
#define all(c) begin(c), end(c)
#define rall(c) rbegin(c), rend(c)
#define SORT(v) sort(all(v))
#define REV(v) reverse(all(v))
#define UNIQUE(x) SORT(x), x.erase(unique(all(x)), x.end())
template <typename T = ll, typename S> T SUM(const S &v) { return accumulate(all(v), T(0)); }
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define overload2(_1, _2, name, ...) name
#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
constexpr pii dx4[4] = {pii{1, 0}, pii{0, 1}, pii{-1, 0}, pii{0, -1}};
constexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}};
namespace yesno_impl {
const string YESNO[2] = {"NO", "YES"};
const string YesNo[2] = {"No", "Yes"};
const string yesno[2] = {"no", "yes"};
const string firstsecond[2] = {"second", "first"};
const string FirstSecond[2] = {"Second", "First"};
const string possiblestr[2] = {"impossible", "possible"};
const string Possiblestr[2] = {"Impossible", "Possible"};
void YES(bool t = 1) { cout << YESNO[t] << endl; }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { cout << YesNo[t] << endl; }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { cout << yesno[t] << endl; }
void no(bool t = 1) { yes(!t); }
void first(bool t = 1) { cout << firstsecond[t] << endl; }
void First(bool t = 1) { cout << FirstSecond[t] << endl; }
void possible(bool t = 1) { cout << possiblestr[t] << endl; }
void Possible(bool t = 1) { cout << Possiblestr[t] << endl; }
}; // namespace yesno_impl
using namespace yesno_impl;
#define INT(...) \
int __VA_ARGS__; \
IN(__VA_ARGS__)
#define INTd(...) \
int __VA_ARGS__; \
IN2(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
IN(__VA_ARGS__)
#define LLd(...) \
ll __VA_ARGS__; \
IN2(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
IN(__VA_ARGS__)
#define CHR(...) \
char __VA_ARGS__; \
IN(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
IN(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
IN(name)
#define VECd(type, name, size) \
vector<type> name(size); \
IN2(name)
#define VEC2(type, name1, name2, size) \
vector<type> name1(size), name2(size); \
for(int i = 0; i < size; i++) IN(name1[i], name2[i])
#define VEC2d(type, name1, name2, size) \
vector<type> name1(size), name2(size); \
for(int i = 0; i < size; i++) IN2(name1[i], name2[i])
#define VEC3(type, name1, name2, name3, size) \
vector<type> name1(size), name2(size), name3(size); \
for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i])
#define VEC3d(type, name1, name2, name3, size) \
vector<type> name1(size), name2(size), name3(size); \
for(int i = 0; i < size; i++) IN2(name1[i], name2[i], name3[i])
#define VEC4(type, name1, name2, name3, name4, size) \
vector<type> name1(size), name2(size), name3(size), name4(size); \
for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i], name4[i]);
#define VEC4d(type, name1, name2, name3, name4, size) \
vector<type> name1(size), name2(size), name3(size), name4(size); \
for(int i = 0; i < size; i++) IN2(name1[i], name2[i], name3[i], name4[i]);
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
IN(name)
#define VVd(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
IN2(name)
int scan() { return getchar(); }
void scan(int &a) { cin >> a; }
void scan(long long &a) { cin >> a; }
void scan(char &a) { cin >> a; }
void scan(double &a) { cin >> a; }
void scan(string &a) { cin >> a; }
template <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }
template <class T> void scan(vector<T> &);
template <class T> void scan(vector<T> &a) {
for(auto &i : a) scan(i);
}
template <class T> void scan(T &a) { cin >> a; }
void IN() {}
void IN2() {}
template <class Head, class... Tail> void IN(Head &head, Tail &...tail) {
scan(head);
IN(tail...);
}
template <class Head, class... Tail> void IN2(Head &head, Tail &...tail) {
scan(head);
--head;
IN2(tail...);
}
template <int p = -1> void pat() {}
template <int p = -1, class Head, class... Tail> void pat(Head &h, Tail &...tail) {
h += p;
pat<p>(tail...);
}
template <typename T, typename S> T ceil(T x, S y) {
assert(y);
return (y < 0 ? ceil(-x, -y) : (x > 0 ? (x + y - 1) / y : x / y));
}
template <typename T, typename S> T floor(T x, S y) {
assert(y);
return (y < 0 ? floor(-x, -y) : (x > 0 ? x / y : x / y - (x % y == 0 ? 0 : 1)));
}
template <typename T, typename S, typename U> U bigmul(const T &x, const S &y, const U &lim) { // clamp(x * y, -lim, lim)
if(x < 0 and y < 0) return bigmul(-x, -y, lim);
if(x < 0) return -bigmul(-x, y, lim);
if(y < 0) return -bigmul(x, -y, lim);
return y == 0 or x <= lim / y ? x * y : lim;
}
template <class T> T POW(T x, int n) {
T res = 1;
for(; n; n >>= 1, x *= x)
if(n & 1) res *= x;
return res;
}
template <class T, class S> T POW(T x, S n, const ll &mod) {
T res = 1;
x %= mod;
for(; n; n >>= 1, x = x * x % mod)
if(n & 1) res = res * x % mod;
return res;
}
vector<pll> factor(ll x) {
vector<pll> ans;
for(ll i = 2; i * i <= x; i++)
if(x % i == 0) {
ans.push_back({i, 1});
while((x /= i) % i == 0) ans.back().second++;
}
if(x != 1) ans.push_back({x, 1});
return ans;
}
template <class T> vector<T> divisor(T x) {
vector<T> ans;
for(T i = 1; i * i <= x; i++)
if(x % i == 0) {
ans.pb(i);
if(i * i != x) ans.pb(x / i);
}
return ans;
}
template <typename T> void zip(vector<T> &x) {
vector<T> y = x;
UNIQUE(y);
for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }
}
template <class S> void fold_in(vector<S> &v) {}
template <typename Head, typename... Tail, class S> void fold_in(vector<S> &v, Head &&a, Tail &&...tail) {
for(auto e : a) v.emplace_back(e);
fold_in(v, tail...);
}
template <class S> void renumber(vector<S> &v) {}
template <typename Head, typename... Tail, class S> void renumber(vector<S> &v, Head &&a, Tail &&...tail) {
for(auto &&e : a) e = lb(v, e);
renumber(v, tail...);
}
template <class S, class... Args> vector<S> zip(vector<S> &head, Args &&...args) {
vector<S> v;
fold_in(v, head, args...);
sort(all(v)), v.erase(unique(all(v)), v.end());
renumber(v, head, args...);
return v;
}
template <typename S> void rearrange(const vector<S> &id) {}
template <typename S, typename T> void rearrange_exec(const vector<S> &id, vector<T> &v) {
vector<T> w(v.size());
rep(i, si(id)) w[i] = v[id[i]];
v.swap(w);
}
// 並び替える順番, 並び替える vector 達
template <typename S, typename Head, typename... Tail> void rearrange(const vector<S> &id, Head &a, Tail &...tail) {
rearrange_exec(id, a);
rearrange(id, tail...);
}
template <typename T> vector<T> RUI(const vector<T> &v) {
vector<T> res(v.size() + 1);
for(int i = 0; i < v.size(); i++) res[i + 1] = res[i] + v[i];
return res;
}
template <typename T> void zeta_supersetsum(vector<T> &f) {
int n = f.size();
for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b] += f[b | i];
}
template <typename T> void zeta_subsetsum(vector<T> &f) {
int n = f.size();
for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b | i] += f[b];
}
template <typename T> void mobius_subset(vector<T> &f) {
int n = f.size();
for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b] -= f[b | i];
}
template <typename T> void mobius_superset(vector<T> &f) {
int n = f.size();
for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b | i] -= f[b];
}
// 反時計周りに 90 度回転
template <typename T> void rot(vector<vector<T>> &v) {
if(empty(v)) return;
int n = v.size(), m = v[0].size();
vector<vector<T>> res(m, vector<T>(n));
rep(i, n) rep(j, m) res[m - 1 - j][i] = v[i][j];
v.swap(res);
}
vector<int> counter(const vector<int> &v, int max_num = -1) {
if(max_num == -1) max_num = MAX(v);
vector<int> res(max_num + 1);
fore(e, v) res[e]++;
return res;
}
// x in [l, r)
template <class T, class S> bool inc(const T &x, const S &l, const S &r) { return l <= x and x < r; }
template <class T, class S> bool inc(const T &x, const pair<S, S> &p) { return p.first <= x and x < p.second; }
// 便利関数
constexpr ll ten(int n) { return n == 0 ? 1 : ten(n - 1) * 10; }
constexpr ll tri(ll n) { return n * (n + 1) / 2; }
// l + ... + r
constexpr ll tri(ll l, ll r) { return (l + r) * (r - l + 1) / 2; }
ll max(int x, ll y) { return max((ll)x, y); }
ll max(ll x, int y) { return max(x, (ll)y); }
int min(int x, ll y) { return min((ll)x, y); }
int min(ll x, int y) { return min(x, (ll)y); }
// bit 演算系
#define bit(i) (1LL << i) // (1 << i)
#define test(b, i) (b >> i & 1) // b の i bit 目が立っているか
ll pow2(int i) { return 1LL << i; }
int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }
int topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }
// int lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }
int lowbit(ull a) { return a == 0 ? 64 : __builtin_ctzll(a); }
// int allbit(int n) { return (1 << n) - 1; }
constexpr ll mask(int n) { return (1LL << n) - 1; }
// int popcount(signed t) { return __builtin_popcount(t); }
// int popcount(ll t) { return __builtin_popcountll(t); }
int popcount(uint64_t t) { return __builtin_popcountll(t); }
static inline uint64_t popcount64(uint64_t x) {
uint64_t m1 = 0x5555555555555555ll;
uint64_t m2 = 0x3333333333333333ll;
uint64_t m4 = 0x0F0F0F0F0F0F0F0Fll;
uint64_t h01 = 0x0101010101010101ll;
x -= (x >> 1) & m1;
x = (x & m2) + ((x >> 2) & m2);
x = (x + (x >> 4)) & m4;
return (x * h01) >> 56;
}
bool ispow2(int i) { return i && (i & -i) == i; }
ll rnd(ll l, ll r) { //[l, r)
#ifdef noimi
static mt19937_64 gen;
#else
static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());
#endif
return uniform_int_distribution<ll>(l, r - 1)(gen);
}
ll rnd(ll n) { return rnd(0, n); }
template <class t> void random_shuffle(vc<t> &a) { rep(i, si(a)) swap(a[i], a[rnd(0, i + 1)]); }
int in() {
int x;
cin >> x;
return x;
}
ll lin() {
unsigned long long x;
cin >> x;
return x;
}
template <class T, class S> pair<T, S> operator-(const pair<T, S> &x) { return pair<T, S>(-x.first, -x.second); }
template <class T, class S> pair<T, S> operator-(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi - y.fi, x.se - y.se); }
template <class T, class S> pair<T, S> operator+(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi + y.fi, x.se + y.se); }
template <class T> pair<T, T> operator&(const pair<T, T> &l, const pair<T, T> &r) { return pair<T, T>(max(l.fi, r.fi), min(l.se, r.se)); }
template <class T, class S> pair<T, S> operator+=(pair<T, S> &l, const pair<T, S> &r) { return l = l + r; }
template <class T, class S> pair<T, S> operator-=(pair<T, S> &l, const pair<T, S> &r) { return l = l - r; }
// 開閉
template <class T> bool intersect(const pair<T, T> &l, const pair<T, T> &r) { return (l.se < r.se ? r.fi < l.se : l.fi < r.se); }
template <class T> vector<T> &operator++(vector<T> &v) {
fore(e, v) e++;
return v;
}
template <class T> vector<T> operator++(vector<T> &v, int) {
auto res = v;
fore(e, v) e++;
return res;
}
template <class T> vector<T> &operator--(vector<T> &v) {
fore(e, v) e--;
return v;
}
template <class T> vector<T> operator--(vector<T> &v, int) {
auto res = v;
fore(e, v) e--;
return res;
}
template <class T> void connect(vector<T> &l, const vector<T> &r) { fore(e, r) l.eb(e); }
template <class T> vector<T> operator+(const vector<T> &l, const vector<T> &r) {
vector<T> res(max(si(l), si(r)));
rep(i, si(l)) res[i] += l[i];
rep(i, si(r)) res[i] += r[i];
return res;
}
template <class T> vector<T> operator-(const vector<T> &l, const vector<T> &r) {
vector<T> res(max(si(l), si(r)));
rep(i, si(l)) res[i] += l[i];
rep(i, si(r)) res[i] -= r[i];
return res;
}
template <class T> vector<T> &operator+=(const vector<T> &l, const vector<T> &r) {
if(si(l) < si(r)) l.resize(si(r));
rep(i, si(r)) l[i] += r[i];
return l;
}
template <class T> vector<T> &operator-=(const vector<T> &l, const vector<T> &r) {
if(si(l) < si(r)) l.resize(si(r));
rep(i, si(r)) l[i] -= r[i];
return l;
}
template <class T> vector<T> &operator+=(vector<T> &v, const T &x) {
fore(e, v) e += x;
return v;
}
template <class T> vector<T> &operator-=(vector<T> &v, const T &x) {
fore(e, v) e -= x;
return v;
}
template <typename T> struct edge {
int from, to;
T cost;
int id;
edge(int to, T cost) : from(-1), to(to), cost(cost) {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}
constexpr bool operator<(const edge<T> &rhs) const noexcept { return cost < rhs.cost; }
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
friend ostream operator<<(ostream &os, const edge &e) { return os << e.to; }
};
template <typename T> using Edges = vector<edge<T>>;
template <typename T = int> Edges<T> read_edges(int m, bool weighted = false) {
Edges<T> res;
res.reserve(m);
for(int i = 0; i < m; i++) {
int u, v, c = 0;
scan(u), scan(v), u--, v--;
if(weighted) scan(c);
res.eb(u, v, c, i);
}
return res;
}
using Tree = vector<vector<int>>;
using Graph = vector<vector<int>>;
template <class T> using Wgraph = vector<vector<edge<T>>>;
Graph getG(int n, int m = -1, bool directed = false, int margin = 1) {
Tree res(n);
if(m == -1) m = n - 1;
while(m--) {
int a, b;
cin >> a >> b;
a -= margin, b -= margin;
res[a].emplace_back(b);
if(!directed) res[b].emplace_back(a);
}
return res;
}
Graph getTreeFromPar(int n, int margin = 1) {
Graph res(n);
for(int i = 1; i < n; i++) {
int a;
cin >> a;
res[a - margin].emplace_back(i);
}
return res;
}
template <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {
Wgraph<T> res(n);
if(m == -1) m = n - 1;
while(m--) {
int a, b;
T c;
scan(a), scan(b), scan(c);
a -= margin, b -= margin;
res[a].emplace_back(b, c);
if(!directed) res[b].emplace_back(a, c);
}
return res;
}
void add(Graph &G, int x, int y) { G[x].eb(y), G[y].eb(x); }
template <class S, class T> void add(Wgraph<S> &G, int x, int y, T c) { G[x].eb(y, c), G[y].eb(x, c); }
#define TEST \
INT(testcases); \
while(testcases--)
i128 abs(const i128 &x) { return x > 0 ? x : -x; }
istream &operator>>(istream &is, i128 &v) {
string s;
is >> s;
v = 0;
for(int i = 0; i < (int)s.size(); i++) {
if(isdigit(s[i])) { v = v * 10 + s[i] - '0'; }
}
if(s[0] == '-') { v *= -1; }
return is;
}
ostream &operator<<(ostream &os, const i128 &v) {
if(v == 0) { return (os << "0"); }
i128 num = v;
if(v < 0) {
os << '-';
num = -num;
}
string s;
for(; num > 0; num /= 10) { s.push_back((char)(num % 10) + '0'); }
reverse(s.begin(), s.end());
return (os << s);
}
namespace aux {
template <typename T, unsigned N, unsigned L> struct tp {
static void output(std::ostream &os, const T &v) {
os << std::get<N>(v) << (&os == &cerr ? ", " : " ");
tp<T, N + 1, L>::output(os, v);
}
};
template <typename T, unsigned N> struct tp<T, N, N> {
static void output(std::ostream &os, const T &v) { os << std::get<N>(v); }
};
} // namespace aux
template <typename... Ts> std::ostream &operator<<(std::ostream &os, const std::tuple<Ts...> &t) {
if(&os == &cerr) { os << '('; }
aux::tp<std::tuple<Ts...>, 0, sizeof...(Ts) - 1>::output(os, t);
if(&os == &cerr) { os << ')'; }
return os;
}
template <typename T, typename S, typename U> std::ostream &operator<<(std::ostream &os, const priority_queue<T, S, U> &_pq) {
auto pq = _pq;
vector<T> res;
while(!empty(pq)) res.emplace_back(pq.top()), pq.pop();
return os << res;
}
template <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {
if(&os == &cerr) { return os << "(" << p.first << ", " << p.second << ")"; }
return os << p.first << " " << p.second;
}
template <class Ch, class Tr, class Container> std::basic_ostream<Ch, Tr> &operator<<(std::basic_ostream<Ch, Tr> &os, const Container &x) {
bool f = true;
if(&os == &cerr) os << "[";
for(auto &y : x) {
if(&os == &cerr)
os << (f ? "" : ", ") << y;
else
os << (f ? "" : " ") << y;
f = false;
}
if(&os == &cerr) os << "]";
return os;
}
#define dump(...) static_cast<void>(0)
#define dbg(...) static_cast<void>(0)
void OUT() { cout << endl; }
template <class Head, class... Tail> void OUT(const Head &head, const Tail &...tail) {
cout << head;
if(sizeof...(tail)) cout << ' ';
OUT(tail...);
}
template <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;
template <class T, class S> constexpr pair<T, S> inf<pair<T, S>> = {inf<T>, inf<S>};
template <class T> void OUT2(const T &t, T INF = inf<T>, T res = -1) { OUT(t != INF ? t : res); }
template <class T> void OUT2(vector<T> &v, T INF = inf<T>, T res = -1) {
fore(e, v) if(e == INF) e = res;
OUT(v);
fore(e, v) if(e == res) e = INF;
}
template <class F> struct REC {
F f;
REC(F &&f_) : f(forward<F>(f_)) {}
template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }
};
template <class S> vector<pair<S, int>> runLength(const vector<S> &v) {
vector<pair<S, int>> res;
for(auto &e : v) {
if(res.empty() or res.back().fi != e)
res.eb(e, 1);
else
res.back().se++;
}
return res;
}
vector<pair<char, int>> runLength(const string &v) {
vector<pair<char, int>> res;
for(auto &e : v) {
if(res.empty() or res.back().fi != e)
res.eb(e, 1);
else
res.back().se++;
}
return res;
}
struct string_converter {
char start = 0;
char type(const char &c) const { return (islower(c) ? 'a' : isupper(c) ? 'A' : isdigit(c) ? '0' : 0); }
int convert(const char &c) {
if(!start) start = type(c);
return c - start;
}
int convert(const char &c, const string &chars) { return chars.find(c); }
template <typename T> auto convert(const T &v) {
vector<decltype(convert(v[0]))> ret;
ret.reserve(size(v));
for(auto &&e : v) ret.emplace_back(convert(e));
return ret;
}
template <typename T> auto convert(const T &v, const string &chars) {
vector<decltype(convert(v[0], chars))> ret;
ret.reserve(size(v));
for(auto &&e : v) ret.emplace_back(convert(e, chars));
return ret;
}
int operator()(const char &v, char s = 0) {
start = s;
return convert(v);
}
int operator()(const char &v, const string &chars) { return convert(v, chars); }
template <typename T> auto operator()(const T &v, char s = 0) {
start = s;
return convert(v);
}
template <typename T> auto operator()(const T &v, const string &chars) { return convert(v, chars); }
} toint;
template <class T, class F> T bin_search(T ok, T ng, const F &f) {
while(abs(ok - ng) > 1) {
T mid = ok + ng >> 1;
(f(mid) ? ok : ng) = mid;
}
return ok;
}
template <class T, class F> T bin_search_double(T ok, T ng, const F &f, int iter = 80) {
while(iter--) {
T mid = (ok + ng) / 2;
(f(mid) ? ok : ng) = mid;
}
return ok;
}
struct Setup_io {
Setup_io() {
ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cout << fixed << setprecision(11);
}
} setup_io;
#endif
#pragma endregion
template <typename T> vector<T> bellman_ford(Edges<T> &edges, int V, int s) {
const auto INF = numeric_limits<T>::max();
vector<T> dist(V, INF);
dist[s] = 0;
for(int i = 0; i < V - 1; i++) {
for(auto &e : edges) {
if(dist[e.from] == INF) continue;
dist[e.to] = min(dist[e.to], dist[e.from] + e.cost);
}
}
for(auto &e : edges) {
if(dist[e.from] == INF) continue;
if(dist[e.from] + e.cost < dist[e.to]) return vector<T>();
}
return dist;
}
namespace modular {
constexpr int MOD = 998244353;
const int MAXN = 11000000;
template <int Modulus> class modint;
using mint = modint<MOD>;
using vmint = vector<mint>;
vector<mint> Inv;
mint inv(int x);
template <int Modulus> class modint {
public:
static constexpr int mod() { return Modulus; }
int a;
constexpr modint(const ll x = 0) noexcept : a(((x % Modulus) + Modulus) % Modulus) {}
constexpr int &val() noexcept { return a; }
constexpr const int &val() const noexcept { return a; }
constexpr modint operator-() const noexcept { return modint() - *this; }
constexpr modint operator+() const noexcept { return *this; }
constexpr modint &operator++() noexcept {
if(++a == MOD) a = 0;
return *this;
}
constexpr modint &operator--() noexcept {
if(!a) a = MOD;
a--;
return *this;
}
constexpr modint operator++(int) {
modint res = *this;
++*this;
return res;
}
constexpr modint operator--(int) {
mint res = *this;
--*this;
return res;
}
constexpr modint &operator+=(const modint rhs) noexcept {
a += rhs.a;
if(a >= Modulus) { a -= Modulus; }
return *this;
}
constexpr modint &operator-=(const modint rhs) noexcept {
if(a < rhs.a) { a += Modulus; }
a -= rhs.a;
return *this;
}
constexpr modint &operator*=(const modint rhs) noexcept {
a = (long long)a * rhs.a % Modulus;
return *this;
}
constexpr modint &operator/=(const modint rhs) noexcept {
a = (long long)a * (modular::inv(rhs.a)).a % Modulus;
return *this;
}
constexpr modint pow(long long n) const noexcept {
if(n < 0) {
n %= Modulus - 1;
n = (Modulus - 1) + n;
}
modint x = *this, r = 1;
while(n) {
if(n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
constexpr modint inv() const noexcept { return pow(Modulus - 2); }
constexpr friend modint operator+(const modint &lhs, const modint &rhs) { return modint(lhs) += modint(rhs); }
constexpr friend modint operator-(const modint &lhs, const modint &rhs) { return modint(lhs) -= modint(rhs); }
constexpr friend modint operator*(const modint &lhs, const modint &rhs) { return modint(lhs) *= modint(rhs); }
constexpr friend modint operator/(const modint &lhs, const modint &rhs) { return modint(lhs) /= modint(rhs); }
constexpr friend bool operator==(const modint &lhs, const modint &rhs) { return lhs.a == rhs.a; }
constexpr friend bool operator!=(const modint &lhs, const modint &rhs) { return lhs.a != rhs.a; }
// constexpr friend modint operator^=(const modint &lhs, const modint &rhs) { return modint(lhs) ^= modint(rhs); }
};
vmint Fact{1, 1}, Ifact{1, 1};
mint inv(int n) {
if(n > MAXN) return (mint(n)).pow(MOD - 2);
if(Inv.empty()) Inv.emplace_back(0), Inv.emplace_back(1);
if(Inv.size() > n)
return Inv[n];
else {
for(int i = Inv.size(); i <= n; ++i) {
auto [y, x] = div(int(MOD), i);
Inv.emplace_back(Inv[x] * (-y));
}
return Inv[n];
}
}
mint fact(int n) {
if(Fact.size() > n)
return Fact[n];
else
for(int i = Fact.size(); i <= n; ++i) Fact.emplace_back(Fact[i - 1] * i);
return Fact[n];
}
mint ifact(int n) {
if(Ifact.size() > n)
return Ifact[n];
else
for(int i = Ifact.size(); i <= n; ++i) Ifact.emplace_back(Ifact[i - 1] * inv(i));
return Ifact[n];
}
mint modpow(ll a, ll n) { return mint(a).pow(n); }
mint inv(mint a) { return inv(a.a); }
mint ifact(mint a) { return ifact(a.a); }
mint fact(mint a) { return fact(a.a); }
mint modpow(mint a, ll n) { return modpow(a.a, n); }
mint C(int a, int b) {
if(a < 0 || b < 0) return 0;
if(a < b) return 0;
if(a > MAXN) {
mint res = 1;
rep(i, b) res *= a - i, res /= i + 1;
return res;
}
return fact(a) * ifact(b) * ifact(a - b);
}
mint P(int a, int b) {
if(a < 0 || b < 0) return 0;
if(a < b) return 0;
if(a > MAXN) {
mint res = 1;
rep(i, b) res *= a - i;
return res;
}
return fact(a) * ifact(a - b);
}
ostream &operator<<(ostream &os, mint a) {
os << a.a;
return os;
}
istream &operator>>(istream &is, mint &a) {
ll x;
is >> x;
a = x;
return is;
}
ostream &operator<<(ostream &os, const vmint &a) {
if(!a.empty()) {
os << a[0];
for(int i = 1; i < si(a); i++) os << " " << a[i];
}
return os;
}
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace convolution {
namespace internal {
int ceil_pow2(int n) {
int x = 0;
while((1U << x) < (unsigned int)(n)) x++;
return x;
}
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if(x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if(_m <= v) v += _m;
return v;
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if(m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while(n) {
if(n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if(n <= 1) return false;
if(n == 2 || n == 7 || n == 61) return true;
if(n % 2 == 0) return false;
long long d = n - 1;
while(d % 2 == 0) d /= 2;
for(long long a : {2, 7, 61}) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while(t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if(y != n - 1 && t % 2 == 0) { return false; }
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if(a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while(t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if(m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if(m == 2) return 1;
if(m == 167772161) return 3;
if(m == 469762049) return 3;
if(m == 754974721) return 11;
if(m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while(x % 2 == 0) x /= 2;
for(int i = 3; (long long)(i)*i <= x; i += 2) {
if(x % i == 0) {
divs[cnt++] = i;
while(x % i == 0) { x /= i; }
}
}
if(x > 1) { divs[cnt++] = x; }
for(int g = 2;; g++) {
bool ok = true;
for(int i = 0; i < cnt; i++) {
if(pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if(ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
void butterfly(std::vector<mint> &a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
if(first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for(int i = cnt2; i >= 2; i--) {
// e^(2^i) == 1
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for(int i = 0; i < cnt2 - 2; i++) {
sum_e[i] = es[i] * now;
now *= ies[i];
}
}
for(int ph = 1; ph <= h; ph++) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint now = 1;
for(int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for(int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * now;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
now *= sum_e[bsf(~(unsigned int)(s))];
}
}
}
void butterfly_inv(std::vector<mint> &a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
if(first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for(int i = cnt2; i >= 2; i--) {
// e^(2^i) == 1
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for(int i = 0; i < cnt2 - 2; i++) {
sum_ie[i] = ies[i] * now;
now *= es[i];
}
}
for(int ph = h; ph >= 1; ph--) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint inow = 1;
for(int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for(int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val();
}
inow *= sum_ie[bsf(~(unsigned int)(s))];
}
}
mint z = mint(n).inv();
for(int i = 0; i < n; i++) a[i] *= z;
}
} // namespace internal
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
if(!n || !m) return {};
if(std::min(n, m) <= 60) {
if(n < m) {
std::swap(n, m);
std::swap(a, b);
}
std::vector<mint> ans(n + m - 1);
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; }
}
return ans;
}
int z = 1 << internal::ceil_pow2(n + m - 1);
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for(int i = 0; i < z; i++) { a[i] *= b[i]; }
internal::butterfly_inv(a);
a.resize(n + m - 1);
// mint iz = mint(z).inv();
// for(int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
} // namespace convolution
using Poly = vmint;
Poly low(const Poly &f, int s) { return Poly(f.begin(), f.begin() + min<int>(max(s, 1), f.size())); }
Poly operator-(Poly f) {
for(auto &&e : f) e = -e;
return f;
}
Poly &operator+=(Poly &l, const Poly &r) {
l.resize(max(l.size(), r.size()));
rep(i, r.size()) l[i] += r[i];
return l;
}
Poly operator+(Poly l, const Poly &r) { return l += r; }
Poly &operator-=(Poly &l, const Poly &r) {
l.resize(max(l.size(), r.size()));
rep(i, r.size()) l[i] -= r[i];
return l;
}
Poly operator-(Poly l, const Poly &r) { return l -= r; }
Poly &operator<<=(Poly &f, size_t n) { return f.insert(f.begin(), n, 0), f; }
Poly operator<<(Poly f, size_t n) { return f <<= n; }
Poly &operator>>=(Poly &f, size_t n) { return f.erase(f.begin(), f.begin() + min(f.size(), n)), f; }
Poly operator>>(Poly f, size_t n) { return f >>= n; }
Poly operator*(const Poly &l, const Poly &r) { return convolution::convolution(l, r); }
Poly &operator*=(Poly &l, const Poly &r) { return l = l * r; }
Poly &operator*=(Poly &l, const mint &x) {
for(auto &e : l) e *= x;
return l;
}
Poly operator*(const Poly &l, const mint &x) {
auto res = l;
return res *= x;
}
Poly inv(const Poly &f, int s = -1) {
if(s == -1) s = f.size();
Poly r(s);
r[0] = mint(1) / f[0];
for(int n = 1; n < s; n *= 2) {
auto F = low(f, 2 * n);
F.resize(2 * n);
convolution::internal::butterfly(F);
auto g = low(r, 2 * n);
g.resize(2 * n);
convolution::internal::butterfly(g);
rep(i, 2 * n) F[i] *= g[i];
convolution::internal::butterfly_inv(F);
rep(i, n) F[i] = 0;
convolution::internal::butterfly(F);
rep(i, 2 * n) F[i] *= g[i];
convolution::internal::butterfly_inv(F);
rep(i, n, min(2 * n, s)) r[i] -= F[i];
}
return r;
}
Poly integ(const Poly &f) {
Poly res(f.size() + 1);
for(int i = 1; i < (int)res.size(); ++i) res[i] = f[i - 1] / i;
return res;
}
Poly deriv(const Poly &f) {
if(f.size() == 0) return Poly();
Poly res(f.size() - 1);
rep(i, res.size()) res[i] = f[i + 1] * (i + 1);
return res;
}
Poly log(const Poly &f) {
Poly g = integ(inv(f) * deriv(f));
return Poly{g.begin(), g.begin() + f.size()};
}
Poly exp(const Poly &f) {
Poly g{1};
while(g.size() < f.size()) {
Poly x(f.begin(), f.begin() + min(f.size(), g.size() * 2));
x[0] += 1;
g.resize(2 * g.size());
x -= log(g);
x *= {g.begin(), g.begin() + g.size() / 2};
rep(i, g.size() / 2, min<int>(x.size(), g.size())) g[i] = x[i];
}
return {g.begin(), g.begin() + f.size()};
}
Poly pow(const Poly &f, ll k, int need = -1) {
const int n = (int)f.size();
if(need == -1) need = n;
int z = 0;
rep(i, n) {
if(f[i].a) break;
z++;
}
if(z * k >= need) return Poly(n);
mint rev = f[z].inv();
auto ff = f;
ff.resize(need);
Poly res = exp(log((ff >> z) * rev) * k) * f[z].pow(k);
res.resize(need - z * k);
return res << z * k;
}
struct Prd {
deque<Poly> deq;
Prd() = default;
void emplace(const Poly &f) { deq.emplace_back(f); }
Poly calc() {
if(deq.empty()) return {1};
sort(all(deq), [&](const Poly &f, const Poly &g) { return si(f) < si(g); });
while(deq.size() > 1) {
deq.emplace_back(deq[0] * deq[1]);
for(int i = 0; i < 2; ++i) deq.pop_front();
}
return deq.front();
}
};
Poly prd(vector<Poly> &v) {
Prd p;
for(auto &e : v) p.emplace(e);
return p.calc();
}
vmint power_table(mint x, int len) {
vmint res(len + 1);
res[0] = 1;
rep(i, len) res[i + 1] = res[i] * x;
return res;
}
// calc f(x + a)
Poly TaylorShift(Poly f, mint a) {
int n = f.size();
rep(i, n) f[i] *= fact(i);
reverse(all(f));
Poly g(n, 1);
rep(i, 1, n) g[i] = g[i - 1] * a * inv(i);
f = (f * g);
f.resize(n);
reverse(begin(f), end(f));
rep(i, n) f[i] *= ifact(i);
return f;
}
// ボールの数、一個以上必要な数、入っていなくてもいい数(区別あり)
mint choose(int num, int a, int b = 0) {
if(num == 0) return !a;
return C(num + b - 1, a + b - 1);
}
// +1 n 個 -1 m 個で累積和 >= 0
mint Catalan(int n, int m) { return C(n + m, m) - C(n + m, m - 1); }
// +1 n 個 -1 m 個で累積和 > -k
mint Catalan2(int n, int m, int k) {
if(m < k) return C(n + m, m);
if(m < n + k) return C(n + m, m) - C(n + m, m - k);
return 0;
}
// +1 n 個 -1 m 個で累積和 < +k
mint Catalan3(int n, int m, int k) { return Catalan2(m, n, k); }
string to_fraction(mint x) {
static const int M = sqrtl(MOD);
rep(i, 1, M + 1) {
if((x * i).a < M) return (i > 1 ? to_string((x * i).a) + " / " + to_string(i) : to_string((x * i).a));
if(MOD - (x * i).a < M) return (i > 1 ? to_string(MOD - (x * i).a) + " / " + to_string(i) : to_string(MOD - (x * i).a));
}
return "?";
}
} // namespace modular
using namespace modular;
// \sum a_i exp(b_i x)
vector<mint> sum_a_expbx(vmint a, vmint b, int m) {
deque<pair<vmint, vmint>> d;
rep(i, si(a)) d.eb(vmint{a[i]}, vmint{1, -mint(b[i])});
while(si(d) > 1) {
auto [p1, q1] = d[0];
auto [p2, q2] = d[1];
rep(2) d.pop_front();
d.emplace_back(p1 * q2 + p2 * q1, q1 * q2);
}
auto res = d[0].fi * inv(d[0].se, m + 1);
res.resize(m + 1);
rep(i, 1, m + 1) res[i] *= ifact(i);
return res;
}
namespace suisen {
namespace library {
template <typename Int, std::enable_if_t<std::is_integral_v<Int>, std::nullptr_t> = nullptr> struct rational {
Int num, den;
rational(Int n = 0, Int d = 1) {
if(n == 0) {
assert(d != 0);
num = 0, den = 1;
} else {
Int g = std::gcd(n, d);
n /= g, d /= g;
if(d < 0) n = -n, d = -d;
num = n, den = d;
}
}
static rational raw(Int n, Int d) {
rational x;
x.num = n, x.den = d;
return x;
}
};
template <typename Int, std::enable_if_t<std::is_integral_v<Int>, std::nullptr_t> = nullptr> struct sbt_node {
using sbt_arc = bool;
static constexpr sbt_arc Left = false, Right = true;
using sbt_path = std::vector<std::pair<sbt_arc, Int>>;
// 1/1
sbt_node() = default;
// a/b (a and b must be positive integer)
sbt_node(Int a, Int b) : sbt_node() {
assert(a > 0 and b > 0);
// implicitly computes the continued fraction
sbt_arc dir = a < b ? Left : Right;
if(dir == Left) std::swap(a, b);
for(; b; dir = not dir) {
Int q = a / b, r = a % b;
// If r != 0: [...,1] ----(q step)----> [...,q+1] = [...,q,1]
// If r == 0: [...,1] ----(q-1 step)----> [...,q] (end)
go_down(dir, q - (r == 0));
a = b, b = r;
}
}
sbt_node(const rational<Int> &x) : sbt_node(x.num, x.den) {}
sbt_node(const sbt_path &path) : sbt_node() {
for(const auto &[dir, num] : path) go_down(dir, num);
}
operator rational<Int>() const { return rational<Int>::raw(_l.num + _r.num, _l.den + _r.den); }
// get the rational number
rational<Int> get() const { return rational<Int>(*this); }
// { inf, sup } of the subtree
std::pair<rational<Int>, rational<Int>> range() const { return {_l, _r}; }
// path from the root node 1/1
const sbt_path &path() const { return _path; }
// distance from the root node 1/1
Int depth() const { return _dep; }
// lowest common ancestor
static sbt_node lca(const sbt_node &a, const sbt_node &b) {
const sbt_path &pa = a.path(), &pb = b.path();
const int k = std::min(pa.size(), pb.size());
sbt_node c;
for(int i = 0; i < k; ++i) {
if(pa[i] == pb[i]) {
c.go_down(pa[i].first, pa[i].second);
} else {
if(pa[i].first == pb[i].first) {
// same direction but different lengths
c.go_down(pa[i].first, std::min(pa[i].second, pb[i].second));
}
break;
}
}
return c;
}
// lowest common ancestor
sbt_node lca(const sbt_node &other) { return lca(*this, other); }
// go up k steps. returns true if 0<=k<=depth, false otherwise (and makes no change).
bool go_up(Int k) {
if(k < 0 or k > depth()) return false;
while(k) {
auto &[dir, num] = _path.back();
const Int u = std::min(k, num);
k -= u;
_dep -= u;
if(dir == Left) {
_r.num -= _l.num * u, _r.den -= _l.den * u;
} else {
_l.num -= _r.num * u, _l.den -= _r.den * u;
}
num -= u;
if(num == 0) _path.pop_back();
}
return true;
}
// go down k steps to the left
void go_down_left(Int k) { go_down(Left, k); }
// go down k steps to the right
void go_down_right(Int k) { go_down(Right, k); }
// go down k steps in the direction `dir`
void go_down(sbt_arc dir, Int k) {
assert(k >= 0);
if(k == 0) return;
if(_path.size() and _path.back().first == dir) {
_path.back().second += k;
} else {
_path.emplace_back(dir, k);
}
_dep += k;
if(dir == Left) {
_r.num += _l.num * k, _r.den += _l.den * k;
} else {
_l.num += _r.num * k, _l.den += _r.den * k;
}
}
private:
rational<Int> _l = rational<Int>::raw(0, 1), _r = rational<Int>::raw(1, 0);
Int _dep = 0;
sbt_path _path{};
};
} // namespace library
using sbt_node = library::sbt_node<int>;
using rational = library::rational<int>;
} // namespace suisen
int main() {
TEST {
INT(n, m);
VEC2(int, l, r, m);
--l;
vi xs = l;
fore(e, r) xs.eb(e);
UNIQUE(xs);
fore(e, l) e = lb(xs, e);
fore(e, r) e = lb(xs, e);
auto ok = [&](ll a, ll b) -> bool {
Edges<ll> E;
rep(i, si(xs) - 1) E.emplace_back(i + 1, i, 0);
rep(i, si(xs) - 1) E.emplace_back(i, i + 1, inf<int>);
rep(i, m) {
E.emplace_back(l[i], r[i], a);
E.emplace_back(r[i], l[i], -b);
}
auto res = bellman_ford(E, si(xs), 0);
return !empty(res);
};
if(ok(1, 1)) {
OUT(1);
} else {
int ansa = inf<int>, ansb = 1;
suisen::library::sbt_node node(1, 1);
bool tmp = false;
while(true) {
int t = 0;
bool ng = false;
while(true) {
(tmp ? node.go_down_left(1 << t) : node.go_down_right(1 << t));
{
dump(tmp);
suisen::rational r = node;
dump(r.num, r.den);
}
auto check = [&](auto node) {
suisen::rational r = node;
return ok(r.num, r.den);
};
if(check(node) != tmp) {
node.go_up(1 << t);
per(i, t) {
(tmp ? node.go_down_left(1 << i) : node.go_down_right(1 << i));
if(check(node) != tmp) node.go_up(1 << i);
}
if(tmp) {
suisen::rational r = node;
ansa = r.num, ansb = r.den;
}
(tmp ? node.go_down_left(1) : node.go_down_right(1));
tmp = !tmp;
break;
} else {
t++;
if(t >= 20) {
ng = true;
break;
}
}
}
{
dump(tmp, tmp);
suisen::rational r = node;
dump(r.num, r.den);
}
if(tmp) {
suisen::rational r = node;
ansa = r.num, ansb = r.den;
}
if(ng) break;
}
OUT(mint(ansa) * inv(ansb));
}
}
}
详细
Test #1:
score: 100
Accepted
time: 0ms
memory: 3600kb
input:
3 3 3 1 3 2 3 1 2 12 6 2 3 5 7 1 9 4 8 1 2 7 11 4 5 3 4 2 3 1 2 4 4 1 1
output:
1 2 499122178
result:
ok 3 number(s): "1 2 499122178"
Test #2:
score: 0
Accepted
time: 1ms
memory: 3716kb
input:
2000 1000000000 1 259923446 367011266 1000000000 1 882434225 971573327 1000000000 1 41585677 470369580 1000000000 1 371902212 947250194 1000000000 1 787209148 924205796 1000000000 1 259074809 960876164 1000000000 1 148079314 188254573 1000000000 1 940091047 948318624 1000000000 1 40636497 743979446 ...
output:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
result:
ok 2000 numbers
Test #3:
score: 0
Accepted
time: 2ms
memory: 3664kb
input:
1000 1000000000 5 575330909 661595447 708422488 913945134 658050911 930246647 786571892 904549453 851755566 969150871 1000000000 2 198072104 844159589 8876188 644559580 1000000000 2 740802634 976972118 783909534 898449184 1000000000 2 871819537 941611957 465883854 640988372 1000000000 1 99458969 462...
output:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 ...
result:
ok 1000 numbers
Test #4:
score: 0
Accepted
time: 5ms
memory: 3744kb
input:
500 1000000000 13 964546318 987364574 367845944 907446075 259314137 890312338 458318546 959971971 353677471 522446336 782931403 845199078 514387878 786979588 532634932 793056892 905393511 960628299 747423889 986373313 796099347 833069525 906969434 971335651 574582540 647534593 1000000000 6 987712893...
output:
3 1 3 1 1 1 1 1 1 3 2 1 1 1 3 1 2 1 1 2 1 3 1 1 1 2 1 2 2 1 1 1 1 1 1 1 3 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 3 1 2 1 1 1 1 2 3 1 1 1 1 1 1 1 3 2 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 3 1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 1 4 1 2 1 4 1 3 1 1 1 1 1 2 1 1 4 1 ...
result:
ok 500 numbers
Test #5:
score: 0
Accepted
time: 15ms
memory: 3912kb
input:
250 1000000000 10 844342043 888135880 127033337 726074967 581308029 893912240 414276384 752837267 565680461 863374082 230362895 477723054 210479116 423381051 325072305 427826920 178306222 756423471 376470949 993759748 1000000000 2 468173597 607783582 266359996 863641680 1000000000 7 206599093 941381...
output:
2 1 2 1 3 3 1 1 1 2 1 2 2 1 3 5 2 1 1 1 2 1 2 1 3 1 2 1 3 499122178 1 1 1 1 3 1 1 1 3 3 3 1 4 1 1 1 1 1 1 1 1 5 1 4 2 1 3 1 1 1 2 5 2 1 2 6 2 2 1 2 1 1 1 5 8 2 1 2 1 1 2 2 2 1 1 5 8 3 1 1 1 8 2 6 1 1 4 2 1 1 1 1 2 2 1 2 1 1 1 1 1 1 2 1 2 1 1 4 1 1 3 1 2 3 3 2 5 1 1 1 3 2 1 1 1 3 1 1 2 1 1 1 1 3 1 1 ...
result:
ok 250 numbers
Test #6:
score: 0
Accepted
time: 14ms
memory: 3768kb
input:
250 1000000000 4 10495745 465086423 465086424 609997778 396956207 663037010 253873206 396956206 1000000000 33 596279983 655818820 226461062 338625457 407323582 423049163 711408063 778512581 220274357 226461061 702491412 711408062 686978949 688730316 369564474 434159428 778512582 787885602 675683057 ...
output:
1 2 748683266 5 6 453747435 1 10 6 1 499122183 1 4 3 1 3 1 748683266 2 499122179 10 499122178 1 499122179 4 1 7 1 665496238 2 2 2 332748119 249561090 816745381 499122178 2 499122179 5 3 4 17 1 2 2 3 249561092 1 3 924300328 499122179 2 3 332748120 2 7 3 499122187 6 374341634 1 2 332748120 2 2 2 49912...
result:
ok 250 numbers
Test #7:
score: 0
Accepted
time: 37ms
memory: 3788kb
input:
100 1000000000 17 272213590 960979163 970159974 987653658 201788340 556786243 46564706 948945765 786605927 819103747 510930374 747773556 729597186 850647589 412727504 443334406 685627406 773178988 793614323 909668193 830162056 837607472 416766039 753918198 237455713 993045890 848459092 851118478 463...
output:
8 1 1 2 3 3 1 5 1 2 8 2 1 1 3 1 3 6 3 3 2 3 7 2 1 1 3 1 2 1 5 5 2 2 4 2 7 2 1 6 1 2 5 4 5 4 1 1 1 8 6 1 4 4 5 13 1 4 9 4 8 3 8 5 4 7 1 8 1 1 1 9 2 1 6 4 4 3 1 1 1 10 4 6 11 6 6 1 1 4 1 4 2 2 13 5 1 1 5 8
result:
ok 100 numbers
Test #8:
score: 0
Accepted
time: 18ms
memory: 3732kb
input:
100 1000000000 49 187775019 193881727 145323628 162242601 964365230 971504847 226437670 229819402 46971378 49331905 871327590 883354570 310535966 323031740 904117712 916571909 458902934 484636144 13320536 14923771 571938132 574937141 89751784 102733764 412667720 421251698 908036941 932886651 2663244...
output:
2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 3 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 3 1 1 1 1 3 1 1 1 1 1 2 1 1 1 1 1 2 1 2 2 1 1 1
result:
ok 100 numbers
Test #9:
score: 0
Accepted
time: 36ms
memory: 3656kb
input:
100 1000000000 33 607773622 612059886 773446566 927093401 216659567 357373353 949986996 960422356 67865304 185683459 748675762 867719748 419805439 434936264 83601801 106508219 584299087 639485780 487166380 588591547 670602250 789210083 877816826 902687951 800334389 834278741 90815648 214176329 53952...
output:
4 1 4 6 3 1 1 7 1 1 3 3 1 4 4 1 2 4 1 5 1 2 2 1 2 9 2 1 2 2 1 2 1 2 4 2 2 1 1 3 2 2 2 1 1 1 1 4 1 1 2 1 1 1 2 1 7 1 1 1 6 2 1 3 6 4 10 1 1 3 5 1 1 10 8 1 3 1 1 2 3 1 1 6 1 2 1 2 3 3 2 4 1 3 2 7 1 1 1 1
result:
ok 100 numbers
Test #10:
score: 0
Accepted
time: 41ms
memory: 3796kb
input:
100 1000000000 27 423127198 447304856 209683651 219301129 831320345 879604518 631502329 814498734 130918283 202258454 434769186 463838309 448295746 500976275 778017547 864887407 60178254 66348236 615735891 725460273 78684718 129678593 219427409 221445385 242513397 378886240 549135209 710348598 24951...
output:
748683266 2 332748119 2 855638018 2 2 2 1 1 499122179 1 630470119 1 873463814 10 3 598946613 499122178 499122179 720954257 24956110 686292996 499122178 6 2 499122180 332748122 665496237 27 17 1 15 5 199648872 6 4 3 1 285212675 2 1 4 2 499122186 698771050 844668300 887328319 332748120 1 2 499122179 4...
result:
ok 100 numbers
Test #11:
score: 0
Accepted
time: 69ms
memory: 3816kb
input:
50 1000000000 54 393385964 584227315 530511168 878333402 240442438 693353417 66549203 383382851 432995043 781030135 902504635 941834946 40257869 409360381 186795487 285734229 500620269 578283640 769614926 881642580 651338390 854914246 220143804 506609845 486528251 695975933 659594236 951619961 26914...
output:
6 3 9 1 5 1 5 7 4 9 11 7 4 10 1 1 3 1 1 7 11 12 7 6 6 7 1 14 9 5 3 11 7 5 10 1 1 14 2 8 16 4 4 2 2 6 4 1 1 9
result:
ok 50 numbers
Test #12:
score: 0
Accepted
time: 3ms
memory: 3756kb
input:
50 10 65 7 10 3 6 5 7 7 7 3 9 2 2 3 10 10 10 7 7 2 3 5 6 7 10 3 9 2 8 2 8 8 8 4 8 9 9 9 9 7 9 1 1 3 6 9 10 9 10 2 3 7 8 9 10 2 9 9 10 10 10 5 7 6 10 6 8 4 5 10 10 5 5 5 10 8 8 1 9 6 7 3 6 1 9 2 5 1 10 2 9 8 9 8 8 1 1 2 9 4 9 10 10 7 10 2 3 8 9 10 10 2 4 2 9 4 7 1 3 1 9 10 10 1 4 8 9 7 8 7 8 10 88 6 ...
output:
7 8 7 6 4 4 6 4 6 8 7 6 6 3 499122178 3 3 7 10 4 2 3 5 2 8 2 8 1 4 7 4 4 7 6 1 4 2 5 3 6 4 2 1 6 1 6 3 9 6 4
result:
ok 50 numbers
Test #13:
score: 0
Accepted
time: 129ms
memory: 3772kb
input:
25 1000000000 126 107069149 368376053 479032115 765537110 991540256 997326292 403046092 722244014 490526523 516722534 274125538 310843747 777271932 894507975 30859549 117930127 295842439 932626190 696990395 727705976 919364307 981912430 452436750 754049053 436429356 707440965 255169020 717543449 875...
output:
13 12 14 15 3 8 13 499122178 9 17 3 3 5 6 6 22 3 3 16 6 17 5 6 9 19
result:
ok 25 numbers
Test #14:
score: 0
Accepted
time: 295ms
memory: 4012kb
input:
10 1000000000 69 870434015 950861762 463726401 635711398 333118041 890448132 290535922 477961269 413309490 468893401 200588542 259174530 820993949 902249431 919016091 952057155 32176623 226256591 307850591 328322116 544612131 956816575 794988232 980183910 896176727 934471390 445409718 674881616 3109...
output:
7 21 17 13 6 11 30 26 17 14
result:
ok 10 numbers
Test #15:
score: 0
Accepted
time: 476ms
memory: 4032kb
input:
10 1000000000 226 722573032 815472621 582575925 607010515 411370955 463267466 92061989 217643130 187859011 258319855 811376535 844552673 426496326 431292091 785538560 983675713 328209738 364768843 338697990 509158393 502285144 536085577 202590577 293138489 873383022 956559039 765186726 836986281 219...
output:
15 5 5 12 18 2 13 12 35 8
result:
ok 10 numbers
Test #16:
score: 0
Accepted
time: 2ms
memory: 3776kb
input:
10 10 31 7 8 5 9 2 4 6 10 10 10 4 5 3 6 8 8 4 10 7 8 2 8 2 7 3 4 9 9 4 7 1 8 1 10 3 9 2 5 5 8 5 8 5 8 6 6 2 10 3 7 9 10 9 10 7 7 6 6 9 10 6 7 10 165 10 10 9 9 4 9 9 9 1 1 6 8 2 9 4 6 10 10 8 9 5 9 8 8 6 10 6 6 4 6 1 6 3 7 5 9 2 8 5 6 3 5 6 9 6 8 4 7 5 8 9 9 5 7 10 10 5 8 9 10 5 5 3 8 7 10 1 1 7 8 6 ...
output:
6 9 10 10 10 7 9 9 8 9
result:
ok 10 numbers
Test #17:
score: 0
Accepted
time: 936ms
memory: 3816kb
input:
5 1000000000 63 619459262 977043459 300995683 982228427 410548612 621234006 122929033 763884440 421486730 819706101 340188689 623537684 507398179 844353491 337184385 791508531 349294635 959826734 98096933 650360479 385580668 846357810 364950155 640902318 640098682 994083922 770432519 820631492 66011...
output:
8 17 6 40 44
result:
ok 5 number(s): "8 17 6 40 44"
Test #18:
score: 0
Accepted
time: 2384ms
memory: 4008kb
input:
2 1000000000 1954 214176902 795098577 427614652 861416360 690405909 903037538 224031724 678866146 103017905 175158461 481177251 880591454 774838238 795104831 887429528 996876768 889351335 987035745 391908934 489988622 83670551 709453888 679022699 842242196 78153409 642923089 232797325 414737043 6804...
output:
66 8
result:
ok 2 number(s): "66 8"
Test #19:
score: 0
Accepted
time: 2357ms
memory: 3992kb
input:
1 1000000000 2000 804998774 935072473 539475366 898950940 227523606 852755701 309719052 650340983 356982928 655220770 783115802 937764030 570168460 665560212 583166562 906377079 947557671 947616592 774446890 997986030 113320562 897048797 39935214 749273732 63763440 415540685 961986268 990569362 9656...
output:
62
result:
ok 1 number(s): "62"
Test #20:
score: 0
Accepted
time: 2497ms
memory: 4032kb
input:
1 1000000000 2000 983082198 998118377 133255920 610572950 206872860 997430403 184715228 358714182 577917083 618946695 457376242 788935995 213001254 402552678 805136885 901023068 230805393 394264451 647877612 836521262 260384310 990902247 409818531 847221384 791110001 876700979 380113193 775384241 98...
output:
68
result:
ok 1 number(s): "68"
Test #21:
score: 0
Accepted
time: 2494ms
memory: 4068kb
input:
1 1000000000 2000 866198326 984959665 577293370 619895730 40997921 614353847 619519915 762112999 653627047 934559654 836669385 838221693 150801344 848367607 172331400 524704520 514053116 611706075 816275630 945128934 552672251 875377371 924926041 974390075 958648050 977057013 388174710 757781221 867...
output:
65
result:
ok 1 number(s): "65"
Test #22:
score: 0
Accepted
time: 0ms
memory: 3868kb
input:
1 10 2000 3 10 7 9 9 10 4 9 9 10 10 10 5 10 5 8 9 9 8 8 2 8 2 9 4 9 1 4 4 8 7 8 1 3 9 10 5 7 7 9 7 10 5 8 2 7 8 9 2 10 5 6 8 9 4 5 8 8 7 10 7 10 10 10 6 7 5 10 7 10 9 10 1 4 3 6 9 9 7 9 8 9 3 9 3 5 8 10 3 6 3 9 3 10 3 9 4 6 9 10 4 8 4 9 8 10 1 2 10 10 8 9 2 7 5 5 4 6 7 7 1 3 1 5 2 6 8 9 1 8 8 8 8 9 ...
output:
10
result:
ok 1 number(s): "10"
Test #23:
score: 0
Accepted
time: 19ms
memory: 4108kb
input:
1 100 2000 72 77 22 100 39 72 24 62 16 60 72 79 10 83 25 73 65 80 25 52 66 69 59 62 40 64 23 49 52 52 9 29 10 77 98 99 54 69 13 17 40 61 4 21 49 91 24 71 40 96 33 97 81 99 75 99 45 62 34 56 44 96 15 21 18 63 73 81 35 98 97 100 3 8 54 71 14 67 89 91 69 78 54 63 55 82 26 99 21 97 87 89 19 86 47 80 5 3...
output:
53
result:
ok 1 number(s): "53"
Test #24:
score: 0
Accepted
time: 2351ms
memory: 4088kb
input:
1 1000000000 2000 269842809 342989075 757696397 836492119 283800102 368175835 822590805 872323042 941319254 945363554 281911546 293866204 38600498 86445775 480456857 512409031 93001458 142464233 444440343 481314857 199837475 390806080 247541526 359208697 91559247 103334865 843979563 922498813 219394...
output:
56
result:
ok 1 number(s): "56"
Test #25:
score: 0
Accepted
time: 2351ms
memory: 4028kb
input:
1 1000000000 2000 60970930 249531903 605655603 691131570 118119998 120991935 847802043 855924405 584102854 586717700 472229670 472514717 644930188 651241444 827728709 830128844 13795393 40329809 305610899 308346192 701926206 707118828 753530803 795196944 465598902 506244732 289441054 295066017 31306...
output:
48
result:
ok 1 number(s): "48"
Test #26:
score: 0
Accepted
time: 2345ms
memory: 4016kb
input:
1 1000000000 2000 536271720 567640349 500139615 505304625 983805617 983975201 94383607 147481725 660146910 669771610 383881741 388232026 270977785 281138547 732093947 763594417 916230529 918169865 840991913 842180384 148110570 190711924 234960944 320094883 471183646 473316949 589311548 599607524 843...
output:
36
result:
ok 1 number(s): "36"
Test #27:
score: 0
Accepted
time: 2213ms
memory: 3980kb
input:
1 1000000000 2000 253665547 265466414 680907838 683090293 624375234 634603777 122927162 123370400 796036172 809472081 44051418 53038658 805455233 813555754 598048351 601880671 890314580 907216922 71975295 73805827 210790640 215291615 7828762 11464474 755748 9933627 403981737 405251546 203053255 2073...
output:
29
result:
ok 1 number(s): "29"
Test #28:
score: 0
Accepted
time: 2215ms
memory: 4108kb
input:
1 1000000000 2000 405154724 415180094 217599764 236947592 443502690 445411390 704018773 736978289 411258264 417952279 74830932 83239763 549851687 550072757 78499713 79178089 386983274 389145943 904368883 908143439 573835921 579550046 461692563 462204357 737455142 749312955 201370027 208562823 800400...
output:
18
result:
ok 1 number(s): "18"
Test #29:
score: 0
Accepted
time: 2073ms
memory: 4128kb
input:
1 1000000000 2000 636241745 637184786 72054834 72845369 389843249 390664964 168145795 172118428 893106799 895704067 299524880 300801439 29663110 31018768 821696497 823269898 555248504 561118852 786551669 788495535 241984595 244010309 88896181 90154078 409626569 413026599 276562518 278971540 34098107...
output:
12
result:
ok 1 number(s): "12"
Test #30:
score: 0
Accepted
time: 2065ms
memory: 4084kb
input:
1 1000000000 2000 775300798 775887545 414455164 414765933 482698418 483451742 61950757 62192271 660326268 660527972 631032663 631204978 697002803 698108853 355102397 355611777 428369246 428537339 804557428 805328473 927694064 928207744 45269484 45777489 8814283 9209856 715864772 716035358 298335301 ...
output:
14
result:
ok 1 number(s): "14"
Test #31:
score: 0
Accepted
time: 1773ms
memory: 4012kb
input:
1 1000000000 2000 767922821 767991850 289504691 289531721 251731008 251917208 674093628 674196482 531956403 531991130 629214886 629249556 258581533 258771850 376924559 377133497 384702776 384846804 597904466 597997168 225891755 225975116 181703875 181793417 496608917 496630853 949582964 949591315 85...
output:
3
result:
ok 1 number(s): "3"
Test #32:
score: 0
Accepted
time: 1627ms
memory: 4008kb
input:
1 1000000000 2000 228893800 228908417 247092434 247118950 444005072 444005307 11611034 11617481 174532875 174543185 817918839 817922625 970187539 970190706 670081522 670119433 387831247 387855683 302583713 302586447 247247304 247256686 378883005 378894127 227362402 227363360 1961915 1971640 18341639...
output:
2
result:
ok 1 number(s): "2"
Test #33:
score: 0
Accepted
time: 72ms
memory: 4100kb
input:
1 1000000000 2000 57718020 57719049 666380062 666380395 749991324 749991702 892182872 892183353 801943437 801944028 79294169 79294302 555724391 555726783 33922986 33924967 140433140 140433755 885613046 885614480 541055072 541055603 591953292 591956152 486054735 486054958 937249219 937249446 71466373...
output:
1
result:
ok 1 number(s): "1"
Test #34:
score: 0
Accepted
time: 253ms
memory: 3880kb
input:
20 1000000000 41 942725914 956893525 130968778 136999877 528516274 534235456 144476363 150040417 758242783 765399242 43829675 51184350 508202014 513231158 918241923 924218108 662727534 806406887 392873650 493267077 56851982 60477276 290204036 310321327 431216970 440055845 636193295 649883208 2731659...
output:
142606341 3 332748145 218365954 199648872 17 124780547 399297746 86803859 20 554580202 840358768 221832083 695746068 17 516947970 449758446 949942208 332748124 3
result:
ok 20 numbers
Test #35:
score: 0
Accepted
time: 353ms
memory: 4088kb
input:
10 1000000000 417 627781142 629714760 598651777 602008259 852433806 853778002 886286857 888427504 789562767 794791071 982787290 984372848 156909491 157679027 846484388 851062802 157686024 161849304 960912238 962168439 472530654 482013887 281175472 286597312 701329984 702139905 688522549 692226383 23...
output:
87056195 698771053 570425402 862120129 199648873 142606341 564225074 13 499122215 771370646
result:
ok 10 numbers
Test #36:
score: -100
Time Limit Exceeded
input:
1 1000000000 2000 213239071 213382300 339117973 339530479 825361841 826092857 339970803 339980741 798713033 798740067 542540242 542736231 62765592 63346300 641000665 641054005 692199416 692257820 77404143 78416629 950702620 950907897 504833797 505142552 572971840 573068998 340559923 340656260 251909...
output:
390617398