QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#48739 | #4387. Static Query on Tree | neko_nyaa# | AC ✓ | 194ms | 53160kb | C++14 | 4.0kb | 2022-09-15 14:20:06 | 2022-09-15 14:20:07 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define all(x) begin(x), end(x)
#define sz(x) (int)(x).size()
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
template<class T>
struct RMQ {
vector<vector<T>> jmp;
RMQ(const vector<T>& V) : jmp(1, V) {
for (int pw = 1, k = 1; pw * 2 <= sz(V); pw *= 2, ++k) {
jmp.emplace_back(sz(V) - pw * 2 + 1);
rep(j,0,sz(jmp[k]))
jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);
}
}
T query(int a, int b) {
assert(a < b); // or return inf if a == b
int dep = 31 - __builtin_clz(b - a);
return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);
}
};
struct LCA {
int T = 0;
vi time, path, ret, depth;
RMQ<int> rmq;
LCA(vector<vi>& C) : time(sz(C)), depth(sz(C)), rmq((dfs(C,0,-1), ret)) {}
void dfs(vector<vi>& C, int v, int par) {
time[v] = T++;
if (par != -1) depth[v] = depth[par] + 1;
for (int y : C[v]) if (y != par) {
path.push_back(v), ret.push_back(time[v]);
dfs(C, y, v);
}
}
int lca(int a, int b) {
if (a == b) return a;
tie(a, b) = minmax(time[a], time[b]);
return path[rmq.query(a, b)];
}
int dist(int a, int b) {
return depth[a] + depth[b] - 2*depth[lca(a,b)];
}
};
typedef vector<pair<int, int>> vpi;
vpi compressTree(LCA& lca, const vi& subset) {
static vi rev; rev.resize(sz(lca.time));
vi li = subset, &T = lca.time;
auto cmp = [&](int a, int b) { return T[a] < T[b]; };
sort(all(li), cmp);
int m = sz(li)-1;
rep(i,0,m) {
int a = li[i], b = li[i+1];
li.push_back(lca.lca(a, b));
}
sort(all(li), cmp);
li.erase(unique(all(li)), li.end());
rep(i,0,sz(li)) rev[li[i]] = i;
vpi ret = {pii(0, li[0])};
rep(i,0,sz(li)-1) {
int a = li[i], b = li[i+1];
ret.emplace_back(rev[lca.lca(a, b)], b);
}
return ret;
}
const int MAXN = 200005;
vector<int> adj[MAXN];
int isA[MAXN], isB[MAXN], isC[MAXN];
int hasA[MAXN], hasB[MAXN], hasC[MAXN];
void dfs(int now, int prv, int foundC) {
hasC[now] = foundC;
hasA[now] = isA[now];
hasB[now] = isB[now];
for (int u: adj[now]) {
if (u != prv) {
dfs(u, now, foundC | isC[u]);
hasA[now] |= hasA[u];
hasB[now] |= hasB[u];
}
}
}
void solve() {
int n, q; cin >> n >> q;
vector<vi> ed(n);
for (int i = 2; i <= n; i++) {
int p; cin >> p;
ed[p-1].push_back(i-1);
ed[i-1].push_back(p-1);
}
LCA lca(ed);
while (q--) {
set<int> A, B, C;
vector<int> nodes;
int as, bs, cs; cin >> as >> bs >> cs;
for (int i = 0; i < as; i++) {
int x; cin >> x; x--;
nodes.push_back(x);
A.insert(x);
}
for (int i = 0; i < bs; i++) {
int x; cin >> x; x--;
nodes.push_back(x);
B.insert(x);
}
for (int i = 0; i < cs; i++) {
int x; cin >> x; x--;
nodes.push_back(x);
C.insert(x);
}
vpi nw = compressTree(lca, nodes);
for (int i = 0; i < nw.size(); i++) {
adj[i].clear();
int id = nw[i].second;
if (A.count(id)) isA[i] = 1;
if (B.count(id)) isB[i] = 1;
if (C.count(id)) isC[i] = 1;
}
for (int i = 1; i < nw.size(); i++) {
int u = nw[i].first; int v = i;
adj[u].push_back(v);
adj[v].push_back(u);
}
dfs(0, 0, isC[0]);
int ans = 0;
for (int i = 0; i < nw.size(); i++) {
if (hasA[i] && hasB[i] && hasC[i]) {
ans++;
//cout << "NODE " << nw[i].second+1 << '\n';
}
}
for (int i = 1; i < nw.size(); i++) {
int u = nw[i].first; int v = i; // u is the parent
if (hasA[u] && hasB[u] && hasC[u] && hasA[v] && hasB[v] && hasC[v]) {
// all nodes from u to v eligible
ans += lca.dist(nw[i].second, nw[u].second) - 1;
//cout << "PATH " << nw[i].second+1 << ' ' << nw[u].second+1 << '\n';
}
}
cout << ans << '\n';
for (int i = 0; i < nw.size(); i++) {
hasA[i] = isA[i] = 0;
hasB[i] = isB[i] = 0;
hasC[i] = isC[i] = 0;
}
}
}
signed main() {
ios::sync_with_stdio(0); cin.tie(0);
int t; cin >> t;
while (t--) {
solve();
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 194ms
memory: 53160kb
input:
1 200000 18309 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 ...
output:
102147 62590 87270 88880 7654 61542 62953 85022 55135 54125 70500 64356 25824 88300 42278 15336 18132 28734 90282 42889 28099 31311 96842 19959 34366 60205 78358 91142 56048 74688 86091 51979 94750 11989 89544 86860 56720 29534 52343 90031 79002 90293 94554 48340 65015 9181 15016 19884 49445 14181 6...
result:
ok 18309 numbers