QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#464275#5523. Graph Problem With Small $n$BalintRTL 1910ms49072kbC++202.9kb2024-07-06 00:01:232024-07-06 00:01:23

Judging History

你现在查看的是最新测评结果

  • [2024-07-06 00:01:23]
  • 评测
  • 测评结果:TL
  • 用时:1910ms
  • 内存:49072kb
  • [2024-07-06 00:01:23]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

typedef unsigned uint;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<pii> vpii;
typedef complex<double> cpx;
template <typename T> using minPq = priority_queue<T, vector<T>, greater<T>>;
#define ms(a, x) memset(a, x, sizeof(a))
#define pb push_back
#define fs first
#define sn second
#define ALL(v) begin(v), end(v)
#define SZ(v) ((int) (v).size())
#define lbv(v, x) (lower_bound(ALL(v), x) - (v).begin())
#define ubv(v, x) (upper_bound(ALL(v), x) - (v).begin())
template <typename T> inline void UNIQUE(vector<T> &v){sort(ALL(v)); v.resize(unique(ALL(v)) - v.begin());}
const int INF = 0x3f3f3f3f;
const ll LLINF = 0x3f3f3f3f3f3f3f3f;
const double PI = acos(-1);
#define FR(i, n) for(int i = 0; i < (n); i++)
#define FOR(i, a, b) for(int i = (a); i < (b); i++)
#define FORR(i, a, b) for(int i = (a); i >= (b); i--)
#define dbg(x) {cerr << #x << ' ' << x << endl;}
#define dbgArr(arr, n) {cerr << #arr; FR(_i, n) cerr << ' ' << (arr)[_i]; cerr << endl;}
template <typename T, typename U>
ostream& operator<<(ostream &os, pair<T, U> p){return os << "(" << p.fs << ", " << p.sn << ")";}

const int MN = 24;
int n, mask;
int adjMat[MN], iAdjMat[MN], ans[MN];
int dp[1<<(MN-1)], hasDp[1<<(MN-1)];
vi smallPop, eqPop;

bool tmpAns[MN];

bool dfs(int s1, int n1){
    if(hasDp[s1] & (1 << n1)) return dp[s1] & (1 << n1);
    hasDp[s1] |= 1 << n1;

    int adj = adjMat[n1] & s1;
    while(adj){
        int n2 = __builtin_ctz(adj);
        adj ^= 1 << n2;
        if(dfs(s1 ^ (1 << n2), n2)){
            dp[s1] |= 1 << n1;
            return true;
        }
    }
    return false;
}

void solve(){
    dp[0] = adjMat[n-1];
    for(int s1 : smallPop){
        int inc = ~s1 & dp[s1];
        #define proc(n1){int flag = (inc >> n1) & 1; dp[s1 | (1 << n1)] |= adjMat[n1] & -flag;}
        FR(n1, n-1) proc(n1);
        hasDp[s1] = mask;
    }
    for(int s1 : eqPop) hasDp[s1] = mask;

    FR(src, n-1) tmpAns[src] = dfs(mask ^ (1 << src), src);
}

int main(){
    cin.sync_with_stdio(0); cin.tie(0);
    cin >> n;
    FR(i, n){
        string str; cin >> str;
        FR(j, n) iAdjMat[i] |= (str[j]-'0') << j;
    }
    FR(s, 1<<(n-1)){
        int pop = __builtin_popcount(s);
        if(pop < 10) smallPop.pb(s);
        if(pop == 10) eqPop.pb(s);
    }
    mask = (1<<(n-1))-1;

    FR(src, n){
        fill_n(dp, 1<<(n-1), 0);
        fill_n(hasDp, 1<<(n-1), 0);
        vi ord(n);
        iota(ALL(ord), 0);
        swap(ord[src], ord[n-1]);
        ms(adjMat, 0);
        FR(i, n) FR(j, n) adjMat[i] |= ((iAdjMat[ord[i]] >> ord[j]) & 1) << j;
        solve();
        FR(n1, n) if(n1 != src) ans[src] |= tmpAns[ord[n1]] << n1;
    }

    FR(i, n){
        FR(j, n) cout << ((ans[i] >> j) & 1);
        cout << '\n';
    }
}

详细

Test #1:

score: 100
Accepted
time: 1ms
memory: 5660kb

input:

4
0110
1010
1101
0010

output:

0001
0001
0000
1100

result:

ok 4 lines

Test #2:

score: 0
Accepted
time: 0ms
memory: 5580kb

input:

6
010001
101000
010100
001010
000101
100010

output:

010001
101000
010100
001010
000101
100010

result:

ok 6 lines

Test #3:

score: 0
Accepted
time: 0ms
memory: 5624kb

input:

4
0111
1011
1101
1110

output:

0111
1011
1101
1110

result:

ok 4 lines

Test #4:

score: 0
Accepted
time: 896ms
memory: 46360kb

input:

23
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
000000000...

output:

00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
000000000000...

result:

ok 23 lines

Test #5:

score: 0
Accepted
time: 887ms
memory: 47948kb

input:

23
00010100000000000101000
00000000010000000001000
00000000000001000000001
10000000000000000010000
00000000000000000000000
10000000000000000000000
00000001000000000000000
00000010000000000010000
00000000000001000000000
01000000000000000000000
00000000000000000000000
00000000000000000000000
000000000...

output:

00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
000000000000...

result:

ok 23 lines

Test #6:

score: 0
Accepted
time: 930ms
memory: 49072kb

input:

23
00001000000000000000000
00001000010001000000000
00000000000101000010000
00001000000100000000000
11010000010011000100000
00000000000100000000000
00000000000000000000001
00000000000000000101000
00000000000000000000000
01001000000000101010010
00000000000000000000101
00110100000010001000000
000010000...

output:

00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
000000000000...

result:

ok 23 lines

Test #7:

score: 0
Accepted
time: 933ms
memory: 48328kb

input:

23
01000000000001101001100
10000001101000000000000
00000100000100010000100
00000000000000001011000
00000100001000000000000
00101000000000001000001
00000000000000000000000
01000000000000000000000
01000000000100000010000
00000000000001000000011
01001000000000010000000
00100000100001000100001
000000000...

output:

00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
000000000000...

result:

ok 23 lines

Test #8:

score: 0
Accepted
time: 1121ms
memory: 48960kb

input:

23
00000000010001001001010
00100010001101110000001
01000001000100110000000
00000011010001101100100
00000000010000010001000
00000000000000001001000
01010001000000000000001
00110010000000000000010
00000000011000100100000
10011000101000100000000
01000000110010101010000
01100000000000000000000
000000000...

output:

01111111110111110110111
10011111110111110110111
10011111110111110110111
11101111110110110110111
11110111110111110110111
11111011110111111111111
11111101110111110110111
11111110110111110110111
11111111010111110110111
11111111100110100110111
00000000000010000010100
11111111110011110110111
111111111111...

result:

ok 23 lines

Test #9:

score: 0
Accepted
time: 1910ms
memory: 47496kb

input:

23
00001000001001000000000
00101100111110100000000
01001000100001011010000
00000000010000010010000
11100001100001000000010
01000010101010100011011
00000100000100100010000
00001000011000000010001
01101100000000011001001
01010001000010011000000
11000101000110001100000
01000010001000000000010
010001000...

output:

00000000000000000000100
00000000000000000000100
00000000000000000000100
00000000000000000000100
00000000000000000000100
00000000000000000000100
00000000000000000000100
00000000000000000000100
00000000000000000000100
00000000000000000000100
00000000000000000000100
00000000000000000000100
000000000000...

result:

ok 23 lines

Test #10:

score: -100
Time Limit Exceeded

input:

23
00001011110010000000001
00000100000011000000100
00010011010100000000011
00100011011001010100100
10000101000110100000000
01001000001010001000100
10110000000110000010000
10111000001100010100010
10000000000010001000110
10110000001110100110001
00010101010100001000000
00101011011000100100011
110011101...

output:


result: