QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#416660 | #4775. Pool construction | mshcherba | AC ✓ | 106ms | 5084kb | C++20 | 4.0kb | 2024-05-22 01:39:13 | 2024-05-22 01:39:14 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
#define FOR(i, a, b) for(int i = (a); i < (b); i++)
#define RFOR(i, a, b) for(int i = (a) - 1; i >= (b); i--)
#define SZ(a) int(a.size())
#define ALL(a) a.begin(), a.end()
#define PB push_back
#define MP make_pair
#define F first
#define S second
typedef long long LL;
typedef vector<int> VI;
typedef pair<int, int> PII;
typedef double db;
const LL LINF = 1e9;
struct Graph
{
struct Edge
{
int from, to;
LL cap, flow;
};
int n;
vector<Edge> edges;
vector<VI> g;
vector<LL> e;
VI h, current;
priority_queue<PII> overflowing;
VI d;
void init(int _n)
{
n = _n;
edges.clear();
g.clear();
g.resize(n);
e.assign(n, 0);
h.assign(n, 0);
current.assign(n, 0);
}
void addEdge(int from, int to, LL cap)
{
assert(0 <= from && from < n);
assert(0 <= to && to < n);
assert(0 <= cap);
g[from].PB(SZ(edges));
edges.PB({from, to, cap, 0});
g[to].PB(SZ(edges));
edges.PB({to, from, 0, 0});
}
void push(int i)
{
Edge& edge = edges[i];
int delta = min(e[edge.from], edge.cap - edge.flow);
edge.flow += delta;
edges[i ^ 1].flow -= delta;
e[edge.from] -= delta;
if (e[edge.to] == 0)
overflowing.push({h[edge.to], edge.to});
e[edge.to] += delta;
}
void relabel(int u)
{
h[u] = 4 * n + 47;
for (int i : g[u])
{
const Edge& edge = edges[i];
if (edge.flow < edge.cap)
h[u] = min(h[u], h[edge.to] + 1);
}
}
void discharge(int u)
{
while (e[u] > 0)
{
for (; e[u] > 0 && current[u] < SZ(g[u]); current[u]++)
{
int i = g[u][current[u]];
const Edge& edge = edges[i];
if (edge.flow < edge.cap && h[u] == h[edge.to] + 1)
push(i);
}
if (e[u] > 0)
{
relabel(u);
current[u] = 0;
}
}
}
void globalRelabel(int t)
{
d.assign(n, n);
d[t] = 0;
queue<int> q;
q.push(t);
while (!q.empty())
{
int u = q.front();
q.pop();
for (int i : g[u])
{
const Edge& edge = edges[i ^ 1];
if (edge.flow == edge.cap)
continue;
int to = edge.from;
if (d[to] == n)
{
d[to] = d[u] + 1;
q.push(to);
}
}
}
FOR(u, 0, n)
{
h[u] = max(h[u], d[u]);
}
}
void initializePreflow(int s)
{
for (int i : g[s])
{
Edge& edge = edges[i];
if (edge.cap > 0)
{
edge.flow = edge.cap;
edges[i ^ 1].flow = -edge.cap;
e[edge.to] += edge.cap;
e[s] -= edge.cap;
}
}
}
LL flow(int s, int t)
{
assert(0 <= s && s < n);
assert(0 <= t && t < n);
assert(s != t);
initializePreflow(s);
globalRelabel(t);
assert(h[s] == n);
for (const Edge& edge : edges)
{
if (edge.flow < edge.cap)
{
assert(h[edge.from] <= h[edge.to] + 1);
}
}
FOR(u, 0, n)
{
if (e[u] > 0)
overflowing.push({h[u], u});
}
while (!overflowing.empty())
{
int u = overflowing.top().S;
overflowing.pop();
if (u != t)
discharge(u);
}
return e[t];
}
};
void solve()
{
int n, m;
cin >> m >> n;
int d, f, b;
cin >> d >> f >> b;
Graph F;
F.init(n * m + 2);
int S = n * m;
int T = n * m + 1;
int ans = 0;
FOR(i, 0, n)
{
string s;
cin >> s;
FOR(j, 0, m)
{
int valT = 0;
if(s[j] == '.')
valT = f;
int valF = 0;
if(s[j] == '#')
valF = d;
if(i % (n - 1) == 0 || j % (m - 1) == 0)
valF = LINF;
if(valT <= valF)
{
ans += valT;
F.addEdge(S, i * m + j, valF - valT);
}
else
{
ans += valF;
F.addEdge(i * m + j, T, valT - valF);
}
if(i != n - 1)
{
F.addEdge(i * m + j, (i + 1) * m + j, b);
F.addEdge((i + 1) * m + j, i * m + j, b);
}
if(j != m - 1)
{
F.addEdge(i * m + j, i * m + j + 1, b);
F.addEdge(i * m + j + 1, i * m + j, b);
}
}
}
cout << ans + F.flow(S, T) << "\n";
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
int t;
cin >> t;
while(t--)
solve();
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3520kb
input:
3 3 3 5 5 1 #.# #.# ### 5 4 1 8 1 #..## ##.## #.#.# ##### 2 2 27 11 11 #. .#
output:
9 27 22
result:
ok 3 lines
Test #2:
score: 0
Accepted
time: 106ms
memory: 5084kb
input:
56 3 3 5 5 1 #.# #.# ### 5 4 1 8 1 #..## ##.## #.#.# ##### 2 2 1 1 1 ## ## 2 2 1 10000 1 .. .. 5 4 20 41 9 ##### ##.## #.#.# ##### 5 4 20 41 10 ##### ##.## #.#.# ##### 5 4 20 41 11 ##### ##.## #.#.# ##### 5 4 20 39 10 ##### ##.## #.#.# ##### 3 3 9760 9015 711 .#. #.# ### 5 5 7415 7931 2080 ..... #.....
output:
9 27 0 40000 108 120 123 117 20874 100110 112364 203900 271440 462119 490330 1746528 1067774 1055196 2609818 2094932 5199902 13978 73960 99018 262976 224632 78984 167795 392774 649054 1232290 135876 318982 413042 1479538 1680354 349557 540100 2101110 335884 2245998 170698 780013 1804351 2998519 3661...
result:
ok 56 lines