QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#389755#8565. Basic Bloomsucup-team133WA 101ms7104kbC++2323.4kb2024-04-14 19:22:042024-04-14 19:22:04

Judging History

你现在查看的是最新测评结果

  • [2024-04-14 19:22:04]
  • 评测
  • 测评结果:WA
  • 用时:101ms
  • 内存:7104kb
  • [2024-04-14 19:22:04]
  • 提交

answer

#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif

template <class T> std::istream& operator>>(std::istream& is, std::vector<T>& v) {
    for (auto& x : v) is >> x;
    return is;
}

template <class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
    auto sep = "";
    for (const auto& x : v) os << std::exchange(sep, " ") << x;
    return os;
}

template <class T, class U = T> bool chmin(T& x, U&& y) { return y < x and (x = std::forward<U>(y), true); }

template <class T, class U = T> bool chmax(T& x, U&& y) { return x < y and (x = std::forward<U>(y), true); }

template <class T> void mkuni(std::vector<T>& v) {
    std::sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <class T> int lwb(const std::vector<T>& v, const T& x) {
    return std::lower_bound(begin(v), end(v), x) - begin(v);
}

#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

namespace hash_impl {

static constexpr unsigned long long mod = (1ULL << 61) - 1;

struct modint {
    modint() : _v(0) {}
    modint(unsigned long long v) {
        v = (v >> 61) + (v & mod);
        if (v >= mod) v -= mod;
        _v = v;
    }

    unsigned long long val() const { return _v; }

    modint& operator+=(const modint& rhs) {
        _v += rhs._v;
        if (_v >= mod) _v -= mod;
        return *this;
    }
    modint& operator-=(const modint& rhs) {
        if (_v < rhs._v) _v += mod;
        _v -= rhs._v;
        return *this;
    }
    modint& operator*=(const modint& rhs) {
        __uint128_t t = __uint128_t(_v) * rhs._v;
        t = (t >> 61) + (t & mod);
        if (t >= mod) t -= mod;
        _v = t;
        return *this;
    }
    modint& operator/=(const modint& rhs) { return *this = *this * rhs.inv(); }

    modint operator-() const { return modint() - *this; }

    modint pow(long long n) const {
        assert(0 <= n);
        modint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    modint inv() const { return pow(mod - 2); }

    friend modint operator+(const modint& lhs, const modint& rhs) { return modint(lhs) += rhs; }
    friend modint operator-(const modint& lhs, const modint& rhs) { return modint(lhs) -= rhs; }
    friend modint operator*(const modint& lhs, const modint& rhs) { return modint(lhs) *= rhs; }
    friend modint operator/(const modint& lhs, const modint& rhs) { return modint(lhs) /= rhs; }
    friend bool operator==(const modint& lhs, const modint& rhs) { return lhs._v == rhs._v; }
    friend bool operator!=(const modint& lhs, const modint& rhs) { return lhs._v != rhs._v; }
    friend std::ostream& operator<<(std::ostream& os, const modint& rhs) { os << rhs._v; }

  private:
    unsigned long long _v;
};

uint64_t generate_base() {
    std::mt19937_64 mt(std::chrono::steady_clock::now().time_since_epoch().count());
    std::uniform_int_distribution<uint64_t> rand(2, mod - 1);
    return rand(mt);
}

modint base(generate_base());
std::vector<modint> power{1};

modint get_pow(int n) {
    if (n < int(power.size())) return power[n];
    int m = power.size();
    power.resize(n + 1);
    for (int i = m; i <= n; i++) power[i] = power[i - 1] * base;
    return power[n];
}

};  // namespace hash_impl

struct Hash {
    using mint = hash_impl::modint;
    mint x;
    int len;

    Hash() : x(0), len(0) {}
    Hash(mint x, int len) : x(x), len(len) {}

    Hash& operator+=(const Hash& rhs) {
        x = x * hash_impl::get_pow(rhs.len) + rhs.x;
        len += rhs.len;
        return *this;
    }
    Hash operator+(const Hash& rhs) { return *this += rhs; }
    bool operator==(const Hash& rhs) { return x == rhs.x and len == rhs.len; }
};

struct ReversibleHash {
    using mint = hash_impl::modint;
    mint x, rx;
    int len;

    ReversibleHash() : x(0), rx(0), len(0) {}
    ReversibleHash(mint x) : x(x), rx(x), len(1) {}
    ReversibleHash(mint x, mint rx, int len) : x(x), rx(rx), len(len) {}

    ReversibleHash rev() const { return ReversibleHash(rx, x, len); }

    ReversibleHash operator+=(const ReversibleHash& rhs) {
        x = x * hash_impl::get_pow(rhs.len) + rhs.x;
        rx = rx + rhs.rx * hash_impl::get_pow(len);
        len += rhs.len;
        return *this;
    }
    ReversibleHash operator+(const ReversibleHash& rhs) { return *this += rhs; }
    bool operator==(const ReversibleHash& rhs) { return x == rhs.x and rx == rhs.rx and len == rhs.len; }
};

typedef long long ll;
#define all(x) begin(x), end(x)

using namespace std;

using mint = atcoder::modint998244353;
using Mint = hash_impl::modint;

constexpr long long IINF = (1LL << 60) - 1;
const int MAX = 1000000, MAX_BASE = 17, MAX_LEN = 30;
long double LOG[MAX_BASE];
long double LOG_POW[MAX_BASE][MAX_LEN];

struct S {
    int base, digit, len;
    ll val;  // 実数値が IINF 以下ならその値
    mint sum;
    Mint hash;
    long double logarithm;
    S(int base, int digit, int len, ll val, mint sum, Mint hash)
        : base(base), digit(digit), len(len), val(val), sum(sum), hash(hash) {
        /*
        dd...dd
        = d * 11...11
        = d * (base^len - 1) / (base - 1)
        logl(dd...dd)
        = logl(d) - logl(base - 1) + len * logl(base) + logl(1 - 1 / base^len)
        x << 1 => logl(1 - x) ~ -x
        */
        logarithm = LOG[digit] - LOG[base - 1] + len * LOG[base];
        if (len < MAX_LEN) logarithm += LOG_POW[base][len];
    }
    bool operator<(const S& rhs) const {
        if (base == rhs.base) {
            if (len != rhs.len) return len < rhs.len;
            return digit < rhs.digit;
        }
        if (sum == rhs.sum and hash == rhs.hash) return true;
        if (val != IINF and rhs.val != IINF) return val < rhs.val;
        if (val != IINF) return true;
        if (rhs.val != IINF) return false;
        return logarithm < rhs.logarithm;
    }
};

template <class T> T ceil(T x, T y) {
    assert(y >= 1);
    return (x > 0 ? (x + y - 1) / y : x / y);
}
template <class T> T floor(T x, T y) {
    assert(y >= 1);
    return (x > 0 ? x / y : (x - y + 1) / y);
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    for (int i = 1; i < MAX_BASE; i++) {
        LOG[i] = logl(i);
        ll cur = 1;
        for (int j = 1; j < MAX_LEN; j++) {
            cur = (cur == IINF ? cur : cur >= (IINF + i - 1) / i ? IINF : min(IINF, cur * i));
            LOG_POW[i][j] = (cur == IINF ? 0 : logl(1 - 1.0 / cur));
        }
    }
    vector<pair<int, int>> nxt(MAX_BASE, {1, 1});
    vector<ll> VAL(MAX_BASE, 1);
    vector<mint> SUM(MAX_BASE, 1);
    vector<Mint> HASH(MAX_BASE, 1);
    vector<S> cand(MAX_BASE, S(2, 2, 2, 2, 2, 2));
    for (int i = 2; i < MAX_BASE; i++) cand[i] = S(i, 1, 1, VAL[i], SUM[i], HASH[i]);
    Mint pre = 0;
    vector<mint> sum(MAX + 1);
    sum[0] = 0;
    for (int i = 0; i < MAX; i++) {
        for (bool ok = false; not ok;) {
            int argmin = 2;
            for (int j = 3; j < MAX_BASE; j++) {
                if (cand[j] < cand[argmin]) {
                    argmin = j;
                }
            }
            auto [digit, len] = nxt[argmin];
            S go = cand[argmin];
            if (pre != go.hash) {
                sum[i + 1] = sum[i] + go.sum;
                ok = true;
            }
            pre = go.hash;
            if (digit + 1 < argmin)
                nxt[argmin] = {digit + 1, len};
            else {
                nxt[argmin] = {1, len + 1};
                VAL[argmin] = (ceil(IINF, 1LL * argmin) <= VAL[argmin] ? IINF : min(VAL[argmin] * argmin + 1, IINF));
                SUM[argmin] = SUM[argmin] * argmin + 1;
                HASH[argmin] = HASH[argmin] * argmin + 1;
            }
            {
                auto [digit, len] = nxt[argmin];
                cand[argmin] = S(argmin, digit, len,
                                 (ceil(IINF, 1LL * digit) <= VAL[argmin] ? IINF : min(VAL[argmin] * digit, IINF)),
                                 SUM[argmin] * digit, HASH[argmin] * digit);
            }
        }
    }
    int t;
    cin >> t;
    for (; t--;) {
        int l, r;
        cin >> l >> r;
        mint ans = sum[r] - sum[l - 1];
        cout << ans.val() << '\n';
    }
    return 0;
}

详细

Test #1:

score: 100
Accepted
time: 89ms
memory: 7080kb

input:

3
1 2
1 10
15 2000

output:

3
55
736374621

result:

ok 3 number(s): "3 55 736374621"

Test #2:

score: -100
Wrong Answer
time: 101ms
memory: 7104kb

input:

100000
26 99975
57 99944
28 99973
62 99939
71 99930
25 99976
53 99948
60 99941
73 99928
72 99929
30 99971
7 99994
3 99998
35 99966
73 99928
68 99933
83 99918
37 99964
63 99938
17 99984
34 99967
74 99927
6 99995
3 99998
23 99978
91 99910
39 99962
85 99916
82 99919
17 99984
61 99940
31 99970
44 99957
...

output:

83212469
526838526
948340069
422945900
497756046
70077601
859413147
855160620
119008941
753588144
813200467
265965782
286791604
50969840
119008941
892643514
948027515
45199020
784471549
825789977
639408575
929553761
625960854
286791604
543134062
176814189
982835569
607168618
734834139
825789977
3314...

result:

wrong answer 1st numbers differ - expected: '957904590', found: '83212469'