QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#388536 | #8547. Whose Land? | ucup-team987# | WA | 471ms | 3812kb | C++20 | 21.7kb | 2024-04-13 16:40:08 | 2024-04-13 16:40:08 |
Judging History
answer
/**
* date : 2024-04-13 17:39:39
* author : Nyaan
*/
#define NDEBUG
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;
template <typename T, typename U>
struct P : pair<T, U> {
template <typename... Args>
P(Args... args) : pair<T, U>(args...) {}
using pair<T, U>::first;
using pair<T, U>::second;
P &operator+=(const P &r) {
first += r.first;
second += r.second;
return *this;
}
P &operator-=(const P &r) {
first -= r.first;
second -= r.second;
return *this;
}
P &operator*=(const P &r) {
first *= r.first;
second *= r.second;
return *this;
}
template <typename S>
P &operator*=(const S &r) {
first *= r, second *= r;
return *this;
}
P operator+(const P &r) const { return P(*this) += r; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator*(const P &r) const { return P(*this) *= r; }
template <typename S>
P operator*(const S &r) const {
return P(*this) *= r;
}
P operator-() const { return P{-first, -second}; }
};
using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;
constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;
template <typename T>
int sz(const T &t) {
return t.size();
}
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
inline T Max(const vector<T> &v) {
return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
return accumulate(begin(v), end(v), 0LL);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
return ret;
}
template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
return make_pair(t, u);
}
template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
vector<T> ret(v.size() + 1);
if (rev) {
for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
} else {
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
}
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
int max_val = *max_element(begin(v), end(v));
vector<int> inv(max_val + 1, -1);
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
vector<int> mkiota(int n) {
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
T mkrev(const T &v) {
T w{v};
reverse(begin(w), end(w));
return w;
}
template <typename T>
bool nxp(T &v) {
return next_permutation(begin(v), end(v));
}
// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
vector<vector<T>> ret;
vector<T> v;
auto dfs = [&](auto rc, int i) -> void {
if (i == (int)a.size()) {
ret.push_back(v);
return;
}
for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
};
dfs(dfs, 0);
return ret;
}
// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
T res = I;
for (; n; f(a = a * a), n >>= 1) {
if (n & 1) f(res = res * a);
}
return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}
template <typename T>
T Rev(const T &v) {
T res = v;
reverse(begin(res), end(res));
return res;
}
template <typename T>
vector<T> Transpose(const vector<T> &v) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
res[j][i] = v[i][j];
}
}
return res;
}
template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
if (clockwise) {
res[W - 1 - j][i] = v[i][j];
} else {
res[j][H - 1 - i] = v[i][j];
}
}
}
return res;
}
} // namespace Nyaan
// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
return __builtin_popcountll(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
} // namespace Nyaan
// inout
namespace Nyaan {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
istream &operator>>(istream &is, __int128_t &x) {
string S;
is >> S;
x = 0;
int flag = 0;
for (auto &c : S) {
if (c == '-') {
flag = true;
continue;
}
x *= 10;
x += c - '0';
}
if (flag) x = -x;
return is;
}
istream &operator>>(istream &is, __uint128_t &x) {
string S;
is >> S;
x = 0;
for (auto &c : S) {
x *= 10;
x += c - '0';
}
return is;
}
ostream &operator<<(ostream &os, __int128_t x) {
if (x == 0) return os << 0;
if (x < 0) os << '-', x = -x;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
if (x == 0) return os << 0;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
} // namespace Nyaan
// debug
#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif
#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif
// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define die(...) \
do { \
Nyaan::out(__VA_ARGS__); \
return; \
} while (0)
namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
//
template <typename T>
struct edge {
int src, to;
T cost;
edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {}
edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {}
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnweightedGraph = vector<vector<int>>;
// Input of (Unweighted) Graph
UnweightedGraph graph(int N, int M = -1, bool is_directed = false,
bool is_1origin = true) {
UnweightedGraph g(N);
if (M == -1) M = N - 1;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
if (is_1origin) x--, y--;
g[x].push_back(y);
if (!is_directed) g[y].push_back(x);
}
return g;
}
// Input of Weighted Graph
template <typename T>
WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,
bool is_1origin = true) {
WeightedGraph<T> g(N);
if (M == -1) M = N - 1;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
cin >> c;
if (is_1origin) x--, y--;
g[x].emplace_back(x, y, c);
if (!is_directed) g[y].emplace_back(y, x, c);
}
return g;
}
// Input of Edges
template <typename T>
Edges<T> esgraph(int N, int M, int is_weighted = true, bool is_1origin = true) {
Edges<T> es;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
if (is_weighted)
cin >> c;
else
c = 1;
if (is_1origin) x--, y--;
es.emplace_back(x, y, c);
}
return es;
}
// Input of Adjacency Matrix
template <typename T>
vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,
bool is_directed = false, bool is_1origin = true) {
vector<vector<T>> d(N, vector<T>(N, INF));
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
if (is_weighted)
cin >> c;
else
c = 1;
if (is_1origin) x--, y--;
d[x][y] = c;
if (!is_directed) d[y][x] = c;
}
return d;
}
/**
* @brief グラフテンプレート
* @docs docs/graph/graph-template.md
*/
template <typename T, typename F>
struct SegmentTree {
int N;
int size;
vector<T> seg;
const F f;
const T I;
SegmentTree(F _f, const T &I_) : N(0), size(0), f(_f), I(I_) {}
SegmentTree(int _N, F _f, const T &I_) : f(_f), I(I_) { init(_N); }
SegmentTree(const vector<T> &v, F _f, T I_) : f(_f), I(I_) {
init(v.size());
for (int i = 0; i < (int)v.size(); i++) {
seg[i + size] = v[i];
}
build();
}
void init(int _N) {
N = _N;
size = 1;
while (size < N) size <<= 1;
seg.assign(2 * size, I);
}
void set(int k, T x) { seg[k + size] = x; }
void build() {
for (int k = size - 1; k > 0; k--) {
seg[k] = f(seg[2 * k], seg[2 * k + 1]);
}
}
void update(int k, T x) {
k += size;
seg[k] = x;
while (k >>= 1) {
seg[k] = f(seg[2 * k], seg[2 * k + 1]);
}
}
void add(int k, T x) {
k += size;
seg[k] += x;
while (k >>= 1) {
seg[k] = f(seg[2 * k], seg[2 * k + 1]);
}
}
// query to [a, b)
T query(int a, int b) {
T L = I, R = I;
for (a += size, b += size; a < b; a >>= 1, b >>= 1) {
if (a & 1) L = f(L, seg[a++]);
if (b & 1) R = f(seg[--b], R);
}
return f(L, R);
}
T &operator[](const int &k) { return seg[k + size]; }
// check(a[l] * ... * a[r-1]) が true となる最大の r
// (右端まですべて true なら N を返す)
template <class C>
int max_right(int l, C check) {
assert(0 <= l && l <= N);
assert(check(I) == true);
if (l == N) return N;
l += size;
T sm = I;
do {
while (l % 2 == 0) l >>= 1;
if (!check(f(sm, seg[l]))) {
while (l < size) {
l = (2 * l);
if (check(f(sm, seg[l]))) {
sm = f(sm, seg[l]);
l++;
}
}
return l - size;
}
sm = f(sm, seg[l]);
l++;
} while ((l & -l) != l);
return N;
}
// check(a[l] * ... * a[r-1]) が true となる最小の l
// (左端まで true なら 0 を返す)
template <typename C>
int min_left(int r, C check) {
assert(0 <= r && r <= N);
assert(check(I) == true);
if (r == 0) return 0;
r += size;
T sm = I;
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!check(f(seg[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (check(f(seg[r], sm))) {
sm = f(seg[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = f(seg[r], sm);
} while ((r & -r) != r);
return 0;
}
};
template <typename T>
struct has_cost {
private:
template <typename U>
static auto confirm(U u) -> decltype(u.cost, std::true_type());
static auto confirm(...) -> std::false_type;
public:
enum : bool { value = decltype(confirm(std::declval<T>()))::value };
};
template <typename T>
vector<vector<T>> inverse_tree(const vector<vector<T>>& g) {
int N = (int)g.size();
vector<vector<T>> rg(N);
for (int i = 0; i < N; i++) {
for (auto& e : g[i]) {
if constexpr (is_same<T, int>::value) {
rg[e].push_back(i);
} else if constexpr (has_cost<T>::value) {
rg[e].emplace_back(e.to, i, e.cost);
} else {
assert(0);
}
}
}
return rg;
}
template <typename T>
vector<vector<T>> rooted_tree(const vector<vector<T>>& g, int root = 0) {
int N = (int)g.size();
vector<vector<T>> rg(N);
vector<char> v(N, false);
v[root] = true;
queue<int> que;
que.emplace(root);
while (!que.empty()) {
auto p = que.front();
que.pop();
for (auto& e : g[p]) {
if (v[e] == false) {
v[e] = true;
que.push(e);
rg[p].push_back(e);
}
}
}
return rg;
}
/**
* @brief 根付き木・逆辺からなる木への変換
*/
using namespace Nyaan;
namespace noimi {
// S : 持つデータの型 T : 範囲の型
template <class S, class T = int>
struct IntervalManager {
struct node {
T l, r;
S x;
node(const T &_l, const T &_r, const S &_x) : l(_l), r(_r), x(_x) {}
constexpr bool operator<(const node &rhs) const {
if (l != rhs.l) return l < rhs.l;
return r < rhs.r;
}
};
const S unit;
set<node> s;
IntervalManager(const S &u = S()) : unit(u) {}
IntervalManager(const vector<T> &a) {
vector<node> setter;
for (int l = 0; l < a.size(); l++) {
int r = l;
for (; r < a.size() and a[l] == a[r]; r++) {
}
setter.emplace_back(l, r, a[l]);
l = r - 1;
}
s = set<node>(all(setter));
}
// x を含んだセグメントのイテレータを返す
typename set<node>::iterator getIt(const T &x) {
auto it = s.upper_bound(node(x, numeric_limits<T>::max(), 0));
if (it == begin(s)) return end(s);
it = prev(it);
if (it->l <= x and x < it->r) return it;
return end(s);
}
// x を含んだセグメントの情報を持ってくる
node getSeg(const T &x) {
auto it = getIt(x);
if (it != end(s)) return *it;
return node(x, x + 1, unit);
}
// x 以上をはじめて含むセグメントの iterator が帰ってくる
typename set<node>::iterator nextIt(const T &x) {
auto it = s.upper_bound(node(x, numeric_limits<T>::max(), 0));
if (it == begin(s)) return it;
return prev(it);
}
// x に設定されてる値を取得
S get(const T &x) {
auto it = getIt(x);
if (it != end(s)) return it->x;
return unit;
}
S operator[](T k) const { return get(k); }
// [l, r) := x を set するときに消える区間加える区間ごとに関数を呼び出す
// ただし、内包, 結合される [L, r) := x の区間も一旦消す
template <typename ADD, typename DEL>
void update(T l, T r, const S &x, const ADD &add, const DEL &del) {
auto it = s.lower_bound(node{l, 0, x});
while (it != end(s) and it->l <= r) {
if (it->l == r) {
if (it->x == x) {
del(r, it->r, x);
r = it->r, it = s.erase(it);
}
break;
}
if (it->r <= r) {
del(it->l, it->r, it->x);
it = s.erase(it);
} else {
if (it->x == x) {
r = it->r;
del(it->l, it->r, it->x);
it = s.erase(it);
} else {
del(it->l, r, it->x);
node n = *it;
it = s.erase(it);
it = s.emplace_hint(it, r, n.r, n.x);
}
}
}
if (it != begin(s)) {
it = prev(it);
if (it->r == l) {
if (it->x == x) {
del(it->l, it->r, it->x);
l = it->l;
it = s.erase(it);
}
} else if (l < it->r) {
if (it->x == x) {
del(it->l, it->r, it->x);
l = min(l, it->l);
r = max(r, it->r);
it = s.erase(it);
} else {
if (r < it->r) {
it = s.emplace_hint(next(it), r, it->r, it->x);
it = prev(it);
}
del(l, min(r, it->r), it->x);
node n = *it;
it = s.erase(it);
it = s.emplace_hint(it, n.l, l, n.x);
}
}
}
if (it != end(s)) it = next(it);
add(l, r, x);
s.emplace_hint(it, l, r, x);
}
void update(T l, T r, const S &x) {
update(
l, r, x, [](T, T, S) {}, [](T, T, S) {});
}
void show() {
for (auto e : s) {
cerr << "("
<< "[" << e.l << ", " << e.r << "): " << e.x << ") ";
}
cerr << endl;
}
};
} // namespace noimi
void q() {
ini(N, K, Q);
auto g = graph(N);
g = rooted_tree(g, 0);
V<vp> qs(N + 1);
rep(i, Q) {
ini(l, r);
--l;
qs[r].push_back(pl{l, i});
}
vi order, par(N, -1);
{
queue<int> QQ;
QQ.push(0);
while (sz(QQ)) {
int c = QQ.front();
QQ.pop();
order.push_back(c);
each(d, g[c]) QQ.push(d), par[d] = c;
}
trc(order);
}
vi inv = mkinv(order);
vvi L(K + 1, vi(N, -1)), R(K + 1, vi(N, -1));
rep(i, N) {
L[0][i] = inv[i];
R[0][i] = inv[i] + 1;
}
rep1(d, K) rep(i, N) {
if (g[i].empty()) continue;
L[d][i] = inf, R[d][i] = -inf;
each(x, g[i]) {
if (L[d - 1][x] == -1) continue;
amin(L[d][i], L[d - 1][x]);
amax(R[d][i], R[d - 1][x]);
}
if (L[d][i] == inf) L[d][i] = R[d][i] = -1;
assert(L[d][i] <= R[d][i]);
}
auto gen = [&](int ii) -> vp {
vp res;
int c = ii;
for (int i = 0; i <= K; i++) {
if (c == -1) break;
for (int d : vector{K - i, K - i - 1}) {
if (d < 0) continue;
int l = L[d][c];
int r = R[d][c];
if (l != -1) res.emplace_back(l, r);
}
c = par[c];
}
return res;
};
SegmentTree seg(
N + 3, [](int a, int b) { return a + b; }, 0);
noimi::IntervalManager<int, int> im;
auto add = [&](int l, int r, int x) { seg.add(x + 1, r - l); };
auto del = [&](int l, int r, int x) { seg.add(x + 1, l - r); };
auto upd = [&](int l, int r, int x) { im.update(l, r, x, add, del); };
upd(0, N, -1);
vi ans(Q);
rep(i, N + 1) {
each2(l, q, qs[i]) {
int dame = seg.query(0, l + 1);
ans[q] = N - dame;
}
if (i == N) break;
each2(l, r, gen(i)) { upd(l, r, i); }
}
each(x, ans) out(x);
}
void Nyaan::solve() {
int t = 1;
in(t);
while (t--) q();
}
詳細信息
Test #1:
score: 100
Accepted
time: 1ms
memory: 3644kb
input:
2 5 1 2 1 2 1 3 2 4 2 5 2 2 2 3 8 2 3 1 2 1 3 2 4 2 5 4 6 5 7 7 8 2 2 2 5 3 4
output:
4 5 7 8 6
result:
ok 5 number(s): "4 5 7 8 6"
Test #2:
score: 0
Accepted
time: 385ms
memory: 3812kb
input:
1000 500 1 500 291 2 406 9 207 13 71 15 351 17 442 18 496 19 104 20 208 23 448 34 80 42 187 44 352 45 290 46 116 47 318 50 226 52 129 55 83 59 100 60 54 61 73 65 63 66 454 67 43 71 26 74 68 26 320 75 388 76 425 79 170 81 350 83 48 85 153 86 221 90 290 95 130 96 82 98 124 82 36 99 213 100 121 101 132...
output:
255 386 356 124 315 330 437 8 335 423 398 338 180 242 352 500 145 44 342 261 92 326 38 291 259 71 137 456 171 24 162 453 283 325 250 319 478 460 77 354 56 393 372 217 395 265 188 256 134 68 205 429 436 346 300 462 324 170 291 406 207 480 198 182 489 61 476 127 289 204 282 374 114 406 488 366 121 190...
result:
ok 500000 numbers
Test #3:
score: -100
Wrong Answer
time: 471ms
memory: 3704kb
input:
1000 500 2 500 260 2 93 3 399 4 227 5 238 6 382 7 35 12 194 24 141 26 463 27 497 30 102 31 410 32 308 34 357 42 271 43 208 44 446 46 262 50 457 51 467 52 294 53 424 54 267 56 210 58 48 59 339 48 407 65 320 66 33 68 78 33 79 71 315 72 390 74 128 76 83 81 244 87 375 91 79 93 225 94 1 97 433 1 172 100 ...
output:
496 471 423 489 270 388 451 329 495 104 453 321 500 357 24 429 409 496 491 454 469 119 495 460 432 450 496 494 459 435 211 298 426 260 371 490 498 259 490 494 492 477 336 412 425 431 235 445 482 422 296 495 361 407 465 492 497 500 394 222 500 500 500 498 470 470 152 414 337 412 325 387 89 492 313 45...
result:
wrong answer 10076th numbers differ - expected: '240', found: '239'