QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#386514#8547. Whose Land?ucup-team087#WA 301ms4380kbC++2032.1kb2024-04-11 17:48:192024-04-11 17:48:20

Judging History

你现在查看的是最新测评结果

  • [2024-04-11 17:48:20]
  • 评测
  • 测评结果:WA
  • 用时:301ms
  • 内存:4380kb
  • [2024-04-11 17:48:19]
  • 提交

answer

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "library/graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  static constexpr bool is_directed = directed;
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

#ifdef FASTIO
  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }
#endif

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

#ifdef FASTIO
  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
#endif

  vc<int> new_idx;
  vc<bool> used_e;

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  // {G, es}
  Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
    if (len(new_idx) != N) new_idx.assign(N, -1);
    if (len(used_e) != M) used_e.assign(M, 0);
    int n = len(V);
    FOR(i, n) new_idx[V[i]] = i;
    Graph<T, directed> G(n);
    vc<int> history;
    FOR(i, n) {
      for (auto&& e: (*this)[V[i]]) {
        if (used_e[e.id]) continue;
        int a = e.frm, b = e.to;
        if (new_idx[a] != -1 && new_idx[b] != -1) {
          history.eb(e.id);
          used_e[e.id] = 1;
          int eid = (keep_eid ? e.id : -1);
          G.add(new_idx[a], new_idx[b], e.cost, eid);
        }
      }
    }
    FOR(i, n) new_idx[V[i]] = -1;
    for (auto&& eid: history) used_e[eid] = 0;
    G.build();
    return G;
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 2 "library/graph/ds/bfs_numbering.hpp"

// ID[v]:頂点の新しい番号
// calc_range(v, dep):v の部分木で、深さ dep のものたちの範囲
// 深さは絶対的なものであることに注意せよ
template <typename Graph>
struct BFS_Numbering {
  Graph& G;
  int root;
  vector<int> V;
  vector<int> ID;
  vector<int> depth;
  vector<int> parent;
  vector<int> LID, RID;
  vector<int> LID_seq;
  vector<int> dep_ids;
  int cnt;

  BFS_Numbering(Graph& G, int root = 0) : G(G), root(root), cnt(0) { build(); }

  void bfs() {
    deque<int> que = {root};
    while (!que.empty()) {
      int v = que.front();
      que.pop_front();
      ID[v] = V.size();
      V.eb(v);
      for (auto&& [frm, to, cost, id]: G[v]) {
        if (to == parent[v]) continue;
        que.emplace_back(to);
        parent[to] = v;
        depth[to] = depth[v] + 1;
      }
    }
  }

  void dfs(int v) {
    LID[v] = cnt++;
    for (auto&& [frm, to, cost, id]: G[v]) {
      if (to == parent[v]) continue;
      dfs(to);
    }
    RID[v] = cnt;
  }

  void build() {
    int N = G.N;
    V.reserve(N);
    parent.assign(N, -1);
    ID.assign(N, 0);
    LID.assign(N, 0);
    RID.assign(N, 0);
    depth.assign(N, 0);
    bfs();
    dfs(root);
    int D = MAX(depth);
    dep_ids.resize(D + 2);
    FOR(v, N) dep_ids[depth[v] + 1]++;
    FOR(d, D + 1) dep_ids[d + 1] += dep_ids[d];
    LID_seq.reserve(N);
    FOR(i, N) LID_seq.eb(LID[V[i]]);
  }

  // dep は絶対的な深さ
  pair<int, int> calc_range(int v, int dep) {
    assert(dep >= depth[v]);
    if (dep >= len(dep_ids) - 1) return {0, 0};
    int l = LID[v], r = RID[v];
    int L = dep_ids[dep], R = dep_ids[dep + 1];
    int a = bs(L - 1, R, l);
    int b = bs(L - 1, R, r);
    return {a, b};
  }

private:
  int bs(int L, int R, int x) {
    while (L + 1 < R) {
      int M = (L + R) / 2;
      if (LID_seq[M] >= x)
        R = M;
      else
        L = M;
    }
    return R;
  }
};
#line 2 "library/alg/monoid/add.hpp"

template <typename E>
struct Monoid_Add {
  using X = E;
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
  static constexpr X inverse(const X &x) noexcept { return -x; }
  static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
  static constexpr X unit() { return X(0); }
  static constexpr bool commute = true;
};
#line 3 "library/ds/fenwicktree/fenwicktree.hpp"

template <typename Monoid>
struct FenwickTree {
  using G = Monoid;
  using E = typename G::value_type;
  int n;
  vector<E> dat;
  E total;

  FenwickTree() {}
  FenwickTree(int n) { build(n); }
  template <typename F>
  FenwickTree(int n, F f) {
    build(n, f);
  }
  FenwickTree(const vc<E>& v) { build(v); }

  void build(int m) {
    n = m;
    dat.assign(m, G::unit());
    total = G::unit();
  }
  void build(const vc<E>& v) {
    build(len(v), [&](int i) -> E { return v[i]; });
  }
  template <typename F>
  void build(int m, F f) {
    n = m;
    dat.clear();
    dat.reserve(n);
    total = G::unit();
    FOR(i, n) { dat.eb(f(i)); }
    for (int i = 1; i <= n; ++i) {
      int j = i + (i & -i);
      if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]);
    }
    total = prefix_sum(m);
  }

  E prod_all() { return total; }
  E sum_all() { return total; }
  E sum(int k) { return prefix_sum(k); }
  E prod(int k) { return prefix_prod(k); }
  E prefix_sum(int k) { return prefix_prod(k); }
  E prefix_prod(int k) {
    chmin(k, n);
    E ret = G::unit();
    for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]);
    return ret;
  }
  E sum(int L, int R) { return prod(L, R); }
  E prod(int L, int R) {
    chmax(L, 0), chmin(R, n);
    if (L == 0) return prefix_prod(R);
    assert(0 <= L && L <= R && R <= n);
    E pos = G::unit(), neg = G::unit();
    while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; }
    while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; }
    return G::op(pos, G::inverse(neg));
  }

  vc<E> get_all() {
    vc<E> res(n);
    FOR(i, n) res[i] = prod(i, i + 1);
    return res;
  }

  void add(int k, E x) { multiply(k, x); }
  void multiply(int k, E x) {
    static_assert(G::commute);
    total = G::op(total, x);
    for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x);
  }

  template <class F>
  int max_right(const F check, int L = 0) {
    assert(check(G::unit()));
    E s = G::unit();
    int i = L;
    // 2^k 進むとダメ
    int k = [&]() {
      while (1) {
        if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; }
        if (i == 0) { return topbit(n) + 1; }
        int k = lowbit(i) - 1;
        if (i + (1 << k) > n) return k;
        E t = G::op(s, dat[i + (1 << k) - 1]);
        if (!check(t)) { return k; }
        s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i;
      }
    }();
    while (k) {
      --k;
      if (i + (1 << k) - 1 < len(dat)) {
        E t = G::op(s, dat[i + (1 << k) - 1]);
        if (check(t)) { i += (1 << k), s = t; }
      }
    }
    return i;
  }

  // check(i, x)
  template <class F>
  int max_right_with_index(const F check, int L = 0) {
    assert(check(L, G::unit()));
    E s = G::unit();
    int i = L;
    // 2^k 進むとダメ
    int k = [&]() {
      while (1) {
        if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; }
        if (i == 0) { return topbit(n) + 1; }
        int k = lowbit(i) - 1;
        if (i + (1 << k) > n) return k;
        E t = G::op(s, dat[i + (1 << k) - 1]);
        if (!check(i + (1 << k), t)) { return k; }
        s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i;
      }
    }();
    while (k) {
      --k;
      if (i + (1 << k) - 1 < len(dat)) {
        E t = G::op(s, dat[i + (1 << k) - 1]);
        if (check(i + (1 << k), t)) { i += (1 << k), s = t; }
      }
    }
    return i;
  }

  template <class F>
  int min_left(const F check, int R) {
    assert(check(G::unit()));
    E s = G::unit();
    int i = R;
    // false になるところまで戻る
    int k = 0;
    while (i > 0 && check(s)) {
      s = G::op(s, dat[i - 1]);
      k = lowbit(i);
      i -= i & -i;
    }
    if (check(s)) {
      assert(i == 0);
      return 0;
    }
    // 2^k 進むと ok になる
    // false を維持して進む
    while (k) {
      --k;
      E t = G::op(s, G::inverse(dat[i + (1 << k) - 1]));
      if (!check(t)) { i += (1 << k), s = t; }
    }
    return i + 1;
  }

  int kth(E k, int L = 0) {
    return max_right([&k](E x) -> bool { return x <= k; }, L);
  }
};
#line 2 "library/ds/fastset.hpp"

// 64-ary tree
// space: (N/63) * u64
struct FastSet {
  static constexpr u32 B = 64;
  int n, log;
  vvc<u64> seg;

  FastSet() {}
  FastSet(int n) { build(n); }

  int size() { return n; }

  template <typename F>
  FastSet(int n, F f) {
    build(n, f);
  }

  void build(int m) {
    seg.clear();
    n = m;
    do {
      seg.push_back(vc<u64>((m + B - 1) / B));
      m = (m + B - 1) / B;
    } while (m > 1);
    log = len(seg);
  }
  template <typename F>
  void build(int n, F f) {
    build(n);
    FOR(i, n) { seg[0][i / B] |= u64(f(i)) << (i % B); }
    FOR(h, log - 1) {
      FOR(i, len(seg[h])) {
        seg[h + 1][i / B] |= u64(bool(seg[h][i])) << (i % B);
      }
    }
  }

  bool operator[](int i) const { return seg[0][i / B] >> (i % B) & 1; }
  void insert(int i) {
    for (int h = 0; h < log; h++) {
      seg[h][i / B] |= u64(1) << (i % B), i /= B;
    }
  }
  void add(int i) { insert(i); }
  void erase(int i) {
    u64 x = 0;
    for (int h = 0; h < log; h++) {
      seg[h][i / B] &= ~(u64(1) << (i % B));
      seg[h][i / B] |= x << (i % B);
      x = bool(seg[h][i / B]);
      i /= B;
    }
  }
  void remove(int i) { erase(i); }

  // min[x,n) or n
  int next(int i) {
    assert(i <= n);
    chmax(i, 0);
    for (int h = 0; h < log; h++) {
      if (i / B == seg[h].size()) break;
      u64 d = seg[h][i / B] >> (i % B);
      if (!d) {
        i = i / B + 1;
        continue;
      }
      i += lowbit(d);
      for (int g = h - 1; g >= 0; g--) {
        i *= B;
        i += lowbit(seg[g][i / B]);
      }
      return i;
    }
    return n;
  }

  // max [0,x], or -1
  int prev(int i) {
    assert(i >= -1);
    if (i >= n) i = n - 1;
    for (int h = 0; h < log; h++) {
      if (i == -1) break;
      u64 d = seg[h][i / B] << (63 - i % B);
      if (!d) {
        i = i / B - 1;
        continue;
      }
      i -= __builtin_clzll(d);
      for (int g = h - 1; g >= 0; g--) {
        i *= B;
        i += topbit(seg[g][i / B]);
      }
      return i;
    }
    return -1;
  }

  // [l, r)
  template <typename F>
  void enumerate(int l, int r, F f) {
    for (int x = next(l); x < r; x = next(x + 1)) f(x);
  }

  string to_string() {
    string s(n, '?');
    for (int i = 0; i < n; ++i) s[i] = ((*this)[i] ? '1' : '0');
    return s;
  }
};
#line 2 "library/ds/intervals.hpp"

// FastSet で高速化したもの
template <typename T>
struct Intervals_Fast {
  const int LLIM, RLIM;
  const T none_val;
  // none_val でない区間の個数と長さ合計
  int total_num;
  int total_len;
  vc<T> dat;
  FastSet ss;

  Intervals_Fast(int N, T none_val)
      : LLIM(0),
        RLIM(N),
        none_val(none_val),
        total_num(0),
        total_len(0),
        dat(N, none_val),
        ss(N) {
    ss.insert(0);
  }

  // x を含む区間の情報の取得 l, r, t
  tuple<int, int, T> get(int x, bool ERASE) {
    int l = ss.prev(x);
    int r = ss.next(x + 1);
    T t = dat[l];
    if (t != none_val && ERASE) {
      --total_num, total_len -= r - l;
      dat[l] = none_val;
      merge_at(l);
      merge_at(r);
    }
    return {l, r, t};
  }

  // [L, R) 内の全データの取得
  // f(l,r,x)
  template <typename F>
  void enumerate_range(int L, int R, F f, bool ERASE) {
    assert(LLIM <= L && L <= R && R <= RLIM);
    if (L == R) return;
    if (!ERASE) {
      int l = ss.prev(L);
      while (l < R) {
        int r = ss.next(l + 1);
        f(max(l, L), min(r, R), dat[l]);
        l = r;
      }
      return;
    }
    // 半端なところの分割
    int p = ss.prev(L);
    if (p < L) {
      ss.insert(L);
      dat[L] = dat[p];
      if (dat[L] != none_val) ++total_num;
    }
    p = ss.next(R);
    if (R < p) {
      dat[R] = dat[ss.prev(R)];
      ss.insert(R);
      if (dat[R] != none_val) ++total_num;
    }
    p = L;
    while (p < R) {
      int q = ss.next(p + 1);
      T x = dat[p];
      f(p, q, x);
      if (dat[p] != none_val) --total_num, total_len -= q - p;
      ss.erase(p);
      p = q;
    }
    ss.insert(L);
    dat[L] = none_val;
  }

  void set(int L, int R, T t) {
    if (L == R) return;
    enumerate_range(
        L, R, [](int l, int r, T x) -> void {}, true);
    ss.insert(L);
    dat[L] = t;
    if (t != none_val) total_num++, total_len += R - L;
    merge_at(L);
    merge_at(R);
  }

  template <typename F>
  void enumerate_all(F f) {
    enumerate_range(0, RLIM, f, false);
  }

  void merge_at(int p) {
    if (p <= 0 || RLIM <= p) return;
    int q = ss.prev(p - 1);
    if (dat[p] == dat[q]) {
      if (dat[p] != none_val) --total_num;
      ss.erase(p);
    }
  }
};

// https://codeforces.com/contest/1638/problem/E
// 持つ値のタイプ T、座標タイプ X
// コンストラクタでは T none_val を指定する
template <typename T, typename X = ll>
struct Intervals {
  static constexpr X LLIM = -infty<X>;
  static constexpr X RLIM = infty<X>;
  const T none_val;
  // none_val でない区間の個数と長さ合計
  int total_num;
  X total_len;
  map<X, T> dat;

  Intervals(T none_val) : none_val(none_val), total_num(0), total_len(0) {
    dat[LLIM] = none_val;
    dat[RLIM] = none_val;
  }

  // x を含む区間の情報の取得 l, r, t
  tuple<X, X, T> get(X x, bool ERASE) {
    auto it2 = dat.upper_bound(x);
    auto it1 = prev(it2);
    auto [l, tl] = *it1;
    auto [r, tr] = *it2;
    if (tl != none_val && ERASE) {
      --total_num, total_len -= r - l;
      dat[l] = none_val;
      merge_at(l);
      merge_at(r);
    }
    return {l, r, tl};
  }

  // [L, R) 内の全データの取得 f(l, r, t)
  template <typename F>
  void enumerate_range(X L, X R, F f, bool ERASE) {
    assert(LLIM <= L && L <= R && R <= RLIM);
    if (!ERASE) {
      auto it = prev(dat.upper_bound(L));
      while ((*it).fi < R) {
        auto it2 = next(it);
        f(max((*it).fi, L), min((*it2).fi, R), (*it).se);
        it = it2;
      }
      return;
    }
    // 半端なところの分割
    auto p = prev(dat.upper_bound(L));
    if ((*p).fi < L) {
      dat[L] = (*p).se;
      if (dat[L] != none_val) ++total_num;
    }
    p = dat.lower_bound(R);
    if (R < (*p).fi) {
      T t = (*prev(p)).se;
      dat[R] = t;
      if (t != none_val) ++total_num;
    }
    p = dat.lower_bound(L);
    while (1) {
      if ((*p).fi >= R) break;
      auto q = next(p);
      T t = (*p).se;
      f((*p).fi, (*q).fi, t);
      if (t != none_val) --total_num, total_len -= (*q).fi - (*p).fi;
      p = dat.erase(p);
    }
    dat[L] = none_val;
  }

  void set(X L, X R, T t) {
    assert(L <= R);
    if (L == R) return;
    enumerate_range(
        L, R, [](int l, int r, T x) -> void {}, true);
    dat[L] = t;
    if (t != none_val) total_num++, total_len += R - L;
    merge_at(L);
    merge_at(R);
  }

  template <typename F>
  void enumerate_all(F f) {
    enumerate_range(LLIM, RLIM, f, false);
  }

  void merge_at(X p) {
    if (p == LLIM || RLIM == p) return;
    auto itp = dat.lower_bound(p);
    assert((*itp).fi == p);
    auto itq = prev(itp);
    if ((*itp).se == (*itq).se) {
      if ((*itp).se != none_val) --total_num;
      dat.erase(itp);
    }
  }
};
#line 7 "main.cpp"

void solve() {
  LL(N, R, Q);
  Graph<int, 0> G(N);
  G.read_tree();

  BFS_Numbering<decltype(G)> X(G);
  vc<pair<int, int>> query(Q);
  vvc<int> QID(N);
  FOR(q, Q) {
    INT(a, b);
    --a, --b;
    query[q] = {a, b};
    QID[b].eb(q);
  }

  vi ANS(Q);
  FenwickTree<Monoid_Add<int>> bit(N);
  Intervals_Fast<int> I(N, -1);

  FOR(i, N) {
    int d = X.depth[i];
    int v = i;
    FOR(k, R + 1) {
      if (v == -1) break;
      {
        auto [l, r] = X.calc_range(v, d - k + (R - k));
        // [l,r) を v に変更
        I.enumerate_range(
            l, r,
            [&](int l, int r, int x) -> void {
              if (x == -1) return;
              bit.add(x, -(r - l));
            },
            true);
        I.set(l, r, i);
        bit.add(i, r - l);
      }
      if (R - k - 1 >= 0) {
        auto [l, r] = X.calc_range(v, d - k + (R - k - 1));
        // [l,r) を v に変更
        I.enumerate_range(
            l, r,
            [&](int l, int r, int x) -> void {
              if (x == -1) return;
              bit.add(x, -(r - l));
            },
            true);
        I.set(l, r, i);
        bit.add(i, r - l);
      }
      v = X.parent[v];
    }
    for (auto& q: QID[i]) {
      int l = query[q].fi;
      ANS[q] = bit.sum(l, N);
    }
  }
  for (auto& x: ANS) print(x);
}

signed main() {
  INT(T);
  FOR(T) solve();
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3704kb

input:

2
5 1 2
1 2
1 3
2 4
2 5
2 2
2 3
8 2 3
1 2
1 3
2 4
2 5
4 6
5 7
7 8
2 2
2 5
3 4

output:

4
5
7
8
6

result:

ok 5 number(s): "4 5 7 8 6"

Test #2:

score: 0
Accepted
time: 230ms
memory: 4380kb

input:

1000
500 1 500
291 2
406 9
207 13
71 15
351 17
442 18
496 19
104 20
208 23
448 34
80 42
187 44
352 45
290 46
116 47
318 50
226 52
129 55
83 59
100 60
54 61
73 65
63 66
454 67
43 71
26 74
68 26
320 75
388 76
425 79
170 81
350 83
48 85
153 86
221 90
290 95
130 96
82 98
124 82
36 99
213 100
121 101
132...

output:

255
386
356
124
315
330
437
8
335
423
398
338
180
242
352
500
145
44
342
261
92
326
38
291
259
71
137
456
171
24
162
453
283
325
250
319
478
460
77
354
56
393
372
217
395
265
188
256
134
68
205
429
436
346
300
462
324
170
291
406
207
480
198
182
489
61
476
127
289
204
282
374
114
406
488
366
121
190...

result:

ok 500000 numbers

Test #3:

score: -100
Wrong Answer
time: 301ms
memory: 4180kb

input:

1000
500 2 500
260 2
93 3
399 4
227 5
238 6
382 7
35 12
194 24
141 26
463 27
497 30
102 31
410 32
308 34
357 42
271 43
208 44
446 46
262 50
457 51
467 52
294 53
424 54
267 56
210 58
48 59
339 48
407 65
320 66
33 68
78 33
79 71
315 72
390 74
128 76
83 81
244 87
375 91
79 93
225 94
1 97
433 1
172 100
...

output:

496
471
423
489
270
388
451
329
495
104
453
321
500
357
24
429
409
496
491
454
469
119
495
460
432
450
496
494
459
435
211
298
426
260
371
490
498
259
490
494
492
477
336
412
425
431
235
445
482
422
296
495
361
407
465
492
497
500
394
222
500
500
500
498
470
470
152
414
337
412
325
387
89
492
313
45...

result:

wrong answer 10076th numbers differ - expected: '240', found: '239'