QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#386514 | #8547. Whose Land? | ucup-team087# | WA | 301ms | 4380kb | C++20 | 32.1kb | 2024-04-11 17:48:19 | 2024-04-11 17:48:20 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
if (len(used_e) != M) used_e.assign(M, 0);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 2 "library/graph/ds/bfs_numbering.hpp"
// ID[v]:頂点の新しい番号
// calc_range(v, dep):v の部分木で、深さ dep のものたちの範囲
// 深さは絶対的なものであることに注意せよ
template <typename Graph>
struct BFS_Numbering {
Graph& G;
int root;
vector<int> V;
vector<int> ID;
vector<int> depth;
vector<int> parent;
vector<int> LID, RID;
vector<int> LID_seq;
vector<int> dep_ids;
int cnt;
BFS_Numbering(Graph& G, int root = 0) : G(G), root(root), cnt(0) { build(); }
void bfs() {
deque<int> que = {root};
while (!que.empty()) {
int v = que.front();
que.pop_front();
ID[v] = V.size();
V.eb(v);
for (auto&& [frm, to, cost, id]: G[v]) {
if (to == parent[v]) continue;
que.emplace_back(to);
parent[to] = v;
depth[to] = depth[v] + 1;
}
}
}
void dfs(int v) {
LID[v] = cnt++;
for (auto&& [frm, to, cost, id]: G[v]) {
if (to == parent[v]) continue;
dfs(to);
}
RID[v] = cnt;
}
void build() {
int N = G.N;
V.reserve(N);
parent.assign(N, -1);
ID.assign(N, 0);
LID.assign(N, 0);
RID.assign(N, 0);
depth.assign(N, 0);
bfs();
dfs(root);
int D = MAX(depth);
dep_ids.resize(D + 2);
FOR(v, N) dep_ids[depth[v] + 1]++;
FOR(d, D + 1) dep_ids[d + 1] += dep_ids[d];
LID_seq.reserve(N);
FOR(i, N) LID_seq.eb(LID[V[i]]);
}
// dep は絶対的な深さ
pair<int, int> calc_range(int v, int dep) {
assert(dep >= depth[v]);
if (dep >= len(dep_ids) - 1) return {0, 0};
int l = LID[v], r = RID[v];
int L = dep_ids[dep], R = dep_ids[dep + 1];
int a = bs(L - 1, R, l);
int b = bs(L - 1, R, r);
return {a, b};
}
private:
int bs(int L, int R, int x) {
while (L + 1 < R) {
int M = (L + R) / 2;
if (LID_seq[M] >= x)
R = M;
else
L = M;
}
return R;
}
};
#line 2 "library/alg/monoid/add.hpp"
template <typename E>
struct Monoid_Add {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 3 "library/ds/fenwicktree/fenwicktree.hpp"
template <typename Monoid>
struct FenwickTree {
using G = Monoid;
using E = typename G::value_type;
int n;
vector<E> dat;
E total;
FenwickTree() {}
FenwickTree(int n) { build(n); }
template <typename F>
FenwickTree(int n, F f) {
build(n, f);
}
FenwickTree(const vc<E>& v) { build(v); }
void build(int m) {
n = m;
dat.assign(m, G::unit());
total = G::unit();
}
void build(const vc<E>& v) {
build(len(v), [&](int i) -> E { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m;
dat.clear();
dat.reserve(n);
total = G::unit();
FOR(i, n) { dat.eb(f(i)); }
for (int i = 1; i <= n; ++i) {
int j = i + (i & -i);
if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]);
}
total = prefix_sum(m);
}
E prod_all() { return total; }
E sum_all() { return total; }
E sum(int k) { return prefix_sum(k); }
E prod(int k) { return prefix_prod(k); }
E prefix_sum(int k) { return prefix_prod(k); }
E prefix_prod(int k) {
chmin(k, n);
E ret = G::unit();
for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]);
return ret;
}
E sum(int L, int R) { return prod(L, R); }
E prod(int L, int R) {
chmax(L, 0), chmin(R, n);
if (L == 0) return prefix_prod(R);
assert(0 <= L && L <= R && R <= n);
E pos = G::unit(), neg = G::unit();
while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; }
while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; }
return G::op(pos, G::inverse(neg));
}
vc<E> get_all() {
vc<E> res(n);
FOR(i, n) res[i] = prod(i, i + 1);
return res;
}
void add(int k, E x) { multiply(k, x); }
void multiply(int k, E x) {
static_assert(G::commute);
total = G::op(total, x);
for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x);
}
template <class F>
int max_right(const F check, int L = 0) {
assert(check(G::unit()));
E s = G::unit();
int i = L;
// 2^k 進むとダメ
int k = [&]() {
while (1) {
if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; }
if (i == 0) { return topbit(n) + 1; }
int k = lowbit(i) - 1;
if (i + (1 << k) > n) return k;
E t = G::op(s, dat[i + (1 << k) - 1]);
if (!check(t)) { return k; }
s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i;
}
}();
while (k) {
--k;
if (i + (1 << k) - 1 < len(dat)) {
E t = G::op(s, dat[i + (1 << k) - 1]);
if (check(t)) { i += (1 << k), s = t; }
}
}
return i;
}
// check(i, x)
template <class F>
int max_right_with_index(const F check, int L = 0) {
assert(check(L, G::unit()));
E s = G::unit();
int i = L;
// 2^k 進むとダメ
int k = [&]() {
while (1) {
if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; }
if (i == 0) { return topbit(n) + 1; }
int k = lowbit(i) - 1;
if (i + (1 << k) > n) return k;
E t = G::op(s, dat[i + (1 << k) - 1]);
if (!check(i + (1 << k), t)) { return k; }
s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i;
}
}();
while (k) {
--k;
if (i + (1 << k) - 1 < len(dat)) {
E t = G::op(s, dat[i + (1 << k) - 1]);
if (check(i + (1 << k), t)) { i += (1 << k), s = t; }
}
}
return i;
}
template <class F>
int min_left(const F check, int R) {
assert(check(G::unit()));
E s = G::unit();
int i = R;
// false になるところまで戻る
int k = 0;
while (i > 0 && check(s)) {
s = G::op(s, dat[i - 1]);
k = lowbit(i);
i -= i & -i;
}
if (check(s)) {
assert(i == 0);
return 0;
}
// 2^k 進むと ok になる
// false を維持して進む
while (k) {
--k;
E t = G::op(s, G::inverse(dat[i + (1 << k) - 1]));
if (!check(t)) { i += (1 << k), s = t; }
}
return i + 1;
}
int kth(E k, int L = 0) {
return max_right([&k](E x) -> bool { return x <= k; }, L);
}
};
#line 2 "library/ds/fastset.hpp"
// 64-ary tree
// space: (N/63) * u64
struct FastSet {
static constexpr u32 B = 64;
int n, log;
vvc<u64> seg;
FastSet() {}
FastSet(int n) { build(n); }
int size() { return n; }
template <typename F>
FastSet(int n, F f) {
build(n, f);
}
void build(int m) {
seg.clear();
n = m;
do {
seg.push_back(vc<u64>((m + B - 1) / B));
m = (m + B - 1) / B;
} while (m > 1);
log = len(seg);
}
template <typename F>
void build(int n, F f) {
build(n);
FOR(i, n) { seg[0][i / B] |= u64(f(i)) << (i % B); }
FOR(h, log - 1) {
FOR(i, len(seg[h])) {
seg[h + 1][i / B] |= u64(bool(seg[h][i])) << (i % B);
}
}
}
bool operator[](int i) const { return seg[0][i / B] >> (i % B) & 1; }
void insert(int i) {
for (int h = 0; h < log; h++) {
seg[h][i / B] |= u64(1) << (i % B), i /= B;
}
}
void add(int i) { insert(i); }
void erase(int i) {
u64 x = 0;
for (int h = 0; h < log; h++) {
seg[h][i / B] &= ~(u64(1) << (i % B));
seg[h][i / B] |= x << (i % B);
x = bool(seg[h][i / B]);
i /= B;
}
}
void remove(int i) { erase(i); }
// min[x,n) or n
int next(int i) {
assert(i <= n);
chmax(i, 0);
for (int h = 0; h < log; h++) {
if (i / B == seg[h].size()) break;
u64 d = seg[h][i / B] >> (i % B);
if (!d) {
i = i / B + 1;
continue;
}
i += lowbit(d);
for (int g = h - 1; g >= 0; g--) {
i *= B;
i += lowbit(seg[g][i / B]);
}
return i;
}
return n;
}
// max [0,x], or -1
int prev(int i) {
assert(i >= -1);
if (i >= n) i = n - 1;
for (int h = 0; h < log; h++) {
if (i == -1) break;
u64 d = seg[h][i / B] << (63 - i % B);
if (!d) {
i = i / B - 1;
continue;
}
i -= __builtin_clzll(d);
for (int g = h - 1; g >= 0; g--) {
i *= B;
i += topbit(seg[g][i / B]);
}
return i;
}
return -1;
}
// [l, r)
template <typename F>
void enumerate(int l, int r, F f) {
for (int x = next(l); x < r; x = next(x + 1)) f(x);
}
string to_string() {
string s(n, '?');
for (int i = 0; i < n; ++i) s[i] = ((*this)[i] ? '1' : '0');
return s;
}
};
#line 2 "library/ds/intervals.hpp"
// FastSet で高速化したもの
template <typename T>
struct Intervals_Fast {
const int LLIM, RLIM;
const T none_val;
// none_val でない区間の個数と長さ合計
int total_num;
int total_len;
vc<T> dat;
FastSet ss;
Intervals_Fast(int N, T none_val)
: LLIM(0),
RLIM(N),
none_val(none_val),
total_num(0),
total_len(0),
dat(N, none_val),
ss(N) {
ss.insert(0);
}
// x を含む区間の情報の取得 l, r, t
tuple<int, int, T> get(int x, bool ERASE) {
int l = ss.prev(x);
int r = ss.next(x + 1);
T t = dat[l];
if (t != none_val && ERASE) {
--total_num, total_len -= r - l;
dat[l] = none_val;
merge_at(l);
merge_at(r);
}
return {l, r, t};
}
// [L, R) 内の全データの取得
// f(l,r,x)
template <typename F>
void enumerate_range(int L, int R, F f, bool ERASE) {
assert(LLIM <= L && L <= R && R <= RLIM);
if (L == R) return;
if (!ERASE) {
int l = ss.prev(L);
while (l < R) {
int r = ss.next(l + 1);
f(max(l, L), min(r, R), dat[l]);
l = r;
}
return;
}
// 半端なところの分割
int p = ss.prev(L);
if (p < L) {
ss.insert(L);
dat[L] = dat[p];
if (dat[L] != none_val) ++total_num;
}
p = ss.next(R);
if (R < p) {
dat[R] = dat[ss.prev(R)];
ss.insert(R);
if (dat[R] != none_val) ++total_num;
}
p = L;
while (p < R) {
int q = ss.next(p + 1);
T x = dat[p];
f(p, q, x);
if (dat[p] != none_val) --total_num, total_len -= q - p;
ss.erase(p);
p = q;
}
ss.insert(L);
dat[L] = none_val;
}
void set(int L, int R, T t) {
if (L == R) return;
enumerate_range(
L, R, [](int l, int r, T x) -> void {}, true);
ss.insert(L);
dat[L] = t;
if (t != none_val) total_num++, total_len += R - L;
merge_at(L);
merge_at(R);
}
template <typename F>
void enumerate_all(F f) {
enumerate_range(0, RLIM, f, false);
}
void merge_at(int p) {
if (p <= 0 || RLIM <= p) return;
int q = ss.prev(p - 1);
if (dat[p] == dat[q]) {
if (dat[p] != none_val) --total_num;
ss.erase(p);
}
}
};
// https://codeforces.com/contest/1638/problem/E
// 持つ値のタイプ T、座標タイプ X
// コンストラクタでは T none_val を指定する
template <typename T, typename X = ll>
struct Intervals {
static constexpr X LLIM = -infty<X>;
static constexpr X RLIM = infty<X>;
const T none_val;
// none_val でない区間の個数と長さ合計
int total_num;
X total_len;
map<X, T> dat;
Intervals(T none_val) : none_val(none_val), total_num(0), total_len(0) {
dat[LLIM] = none_val;
dat[RLIM] = none_val;
}
// x を含む区間の情報の取得 l, r, t
tuple<X, X, T> get(X x, bool ERASE) {
auto it2 = dat.upper_bound(x);
auto it1 = prev(it2);
auto [l, tl] = *it1;
auto [r, tr] = *it2;
if (tl != none_val && ERASE) {
--total_num, total_len -= r - l;
dat[l] = none_val;
merge_at(l);
merge_at(r);
}
return {l, r, tl};
}
// [L, R) 内の全データの取得 f(l, r, t)
template <typename F>
void enumerate_range(X L, X R, F f, bool ERASE) {
assert(LLIM <= L && L <= R && R <= RLIM);
if (!ERASE) {
auto it = prev(dat.upper_bound(L));
while ((*it).fi < R) {
auto it2 = next(it);
f(max((*it).fi, L), min((*it2).fi, R), (*it).se);
it = it2;
}
return;
}
// 半端なところの分割
auto p = prev(dat.upper_bound(L));
if ((*p).fi < L) {
dat[L] = (*p).se;
if (dat[L] != none_val) ++total_num;
}
p = dat.lower_bound(R);
if (R < (*p).fi) {
T t = (*prev(p)).se;
dat[R] = t;
if (t != none_val) ++total_num;
}
p = dat.lower_bound(L);
while (1) {
if ((*p).fi >= R) break;
auto q = next(p);
T t = (*p).se;
f((*p).fi, (*q).fi, t);
if (t != none_val) --total_num, total_len -= (*q).fi - (*p).fi;
p = dat.erase(p);
}
dat[L] = none_val;
}
void set(X L, X R, T t) {
assert(L <= R);
if (L == R) return;
enumerate_range(
L, R, [](int l, int r, T x) -> void {}, true);
dat[L] = t;
if (t != none_val) total_num++, total_len += R - L;
merge_at(L);
merge_at(R);
}
template <typename F>
void enumerate_all(F f) {
enumerate_range(LLIM, RLIM, f, false);
}
void merge_at(X p) {
if (p == LLIM || RLIM == p) return;
auto itp = dat.lower_bound(p);
assert((*itp).fi == p);
auto itq = prev(itp);
if ((*itp).se == (*itq).se) {
if ((*itp).se != none_val) --total_num;
dat.erase(itp);
}
}
};
#line 7 "main.cpp"
void solve() {
LL(N, R, Q);
Graph<int, 0> G(N);
G.read_tree();
BFS_Numbering<decltype(G)> X(G);
vc<pair<int, int>> query(Q);
vvc<int> QID(N);
FOR(q, Q) {
INT(a, b);
--a, --b;
query[q] = {a, b};
QID[b].eb(q);
}
vi ANS(Q);
FenwickTree<Monoid_Add<int>> bit(N);
Intervals_Fast<int> I(N, -1);
FOR(i, N) {
int d = X.depth[i];
int v = i;
FOR(k, R + 1) {
if (v == -1) break;
{
auto [l, r] = X.calc_range(v, d - k + (R - k));
// [l,r) を v に変更
I.enumerate_range(
l, r,
[&](int l, int r, int x) -> void {
if (x == -1) return;
bit.add(x, -(r - l));
},
true);
I.set(l, r, i);
bit.add(i, r - l);
}
if (R - k - 1 >= 0) {
auto [l, r] = X.calc_range(v, d - k + (R - k - 1));
// [l,r) を v に変更
I.enumerate_range(
l, r,
[&](int l, int r, int x) -> void {
if (x == -1) return;
bit.add(x, -(r - l));
},
true);
I.set(l, r, i);
bit.add(i, r - l);
}
v = X.parent[v];
}
for (auto& q: QID[i]) {
int l = query[q].fi;
ANS[q] = bit.sum(l, N);
}
}
for (auto& x: ANS) print(x);
}
signed main() {
INT(T);
FOR(T) solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3704kb
input:
2 5 1 2 1 2 1 3 2 4 2 5 2 2 2 3 8 2 3 1 2 1 3 2 4 2 5 4 6 5 7 7 8 2 2 2 5 3 4
output:
4 5 7 8 6
result:
ok 5 number(s): "4 5 7 8 6"
Test #2:
score: 0
Accepted
time: 230ms
memory: 4380kb
input:
1000 500 1 500 291 2 406 9 207 13 71 15 351 17 442 18 496 19 104 20 208 23 448 34 80 42 187 44 352 45 290 46 116 47 318 50 226 52 129 55 83 59 100 60 54 61 73 65 63 66 454 67 43 71 26 74 68 26 320 75 388 76 425 79 170 81 350 83 48 85 153 86 221 90 290 95 130 96 82 98 124 82 36 99 213 100 121 101 132...
output:
255 386 356 124 315 330 437 8 335 423 398 338 180 242 352 500 145 44 342 261 92 326 38 291 259 71 137 456 171 24 162 453 283 325 250 319 478 460 77 354 56 393 372 217 395 265 188 256 134 68 205 429 436 346 300 462 324 170 291 406 207 480 198 182 489 61 476 127 289 204 282 374 114 406 488 366 121 190...
result:
ok 500000 numbers
Test #3:
score: -100
Wrong Answer
time: 301ms
memory: 4180kb
input:
1000 500 2 500 260 2 93 3 399 4 227 5 238 6 382 7 35 12 194 24 141 26 463 27 497 30 102 31 410 32 308 34 357 42 271 43 208 44 446 46 262 50 457 51 467 52 294 53 424 54 267 56 210 58 48 59 339 48 407 65 320 66 33 68 78 33 79 71 315 72 390 74 128 76 83 81 244 87 375 91 79 93 225 94 1 97 433 1 172 100 ...
output:
496 471 423 489 270 388 451 329 495 104 453 321 500 357 24 429 409 496 491 454 469 119 495 460 432 450 496 494 459 435 211 298 426 260 371 490 498 259 490 494 492 477 336 412 425 431 235 445 482 422 296 495 361 407 465 492 497 500 394 222 500 500 500 498 470 470 152 414 337 412 325 387 89 492 313 45...
result:
wrong answer 10076th numbers differ - expected: '240', found: '239'