QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#383320 | #5069. Vacation | hhoppitree | WA | 239ms | 94108kb | C++14 | 9.8kb | 2024-04-09 10:01:47 | 2024-04-09 10:01:47 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 5;
long long States[N * 20], *nowState = States;
inline long long* myMalloc(int sz, int flg = 0)
{
long long *sta = nowState;
nowState += sz;
if (flg) {
fill(sta, nowState, (long long)-1e18);
}
return sta;
}
char I[40000050], *J = I, O[8000050], *o = O;
inline int read()
{
unsigned int x = 0;
bool zf = 0;
while ((*J < 48 || 57 < *J) && (*J) != '-') ++J;
((*J++ == '-') ? (zf = 1) : x = *(J - 1) ^ 48);
while (47 < *J && *J < 58) x = (x << 1) + (x << 3) + (*J++ ^ 48);
return (zf ? -(int)x : x);
}
inline void print(unsigned long long x)
{
static unsigned long long S[16], T = 0, y;
do y = x / 10, S[T++] = x - y * 10; while(x = y);
while (T) *o++ = S[--T] ^ 48;
}
int n, m, C;
long long a[N];
namespace SEG1
{
typedef long long LL;
typedef tuple<LL, LL, LL, LL> dt;
int sz;
dt z[1 << 22];
inline dt operator + (dt x, dt y)
{
auto [a, b, c, d] = x;
auto [e, f, g, h] = y;
return {a + e, max({b, f, d + g}), max(c, a + g), max(h, e + d)};
}
inline void build()
{
sz = 1;
while (sz <= n + 1) {
sz <<= 1;
}
for (int i = 1; i <= n; ++i) {
z[i + sz] = {a[i], max(a[i], 0ll), max(a[i], 0ll), max(a[i], 0ll)};
}
for (int i = (n + sz) >> 1; i; --i) {
z[i] = z[i << 1] + z[i << 1 | 1];
}
return;
}
inline void modify(int x)
{
z[x + sz] = {a[x], max(a[x], 0ll), max(a[x], 0ll), max(a[x], 0ll)};
x += sz;
while (x >>= 1) {
z[x] = z[x << 1] + z[x << 1 | 1];
}
return;
}
inline long long query(int L, int R)
{
dt rL = {0, 0, 0, 0}, rR = {0, 0, 0, 0};
for (L += sz - 1, R += sz + 1; L ^ R ^ 1; L >>= 1, R >>= 1) {
(!(L & 1)) && (rL = rL + z[L ^ 1], 0);
(R & 1) && (rR = z[R ^ 1] + rR, 0);
}
auto [A, B, C, D] = rL + rR;
return B;
}
inline long long cb(dt z)
{
auto &[A, B, C, D] = z;
return A;
}
inline long long querySum(int L, int R)
{
if (L > R) {
return 0ll;
}
long long S = 0;
for (L += sz - 1, R += sz + 1; L ^ R ^ 1; L >>= 1, R >>= 1) {
(!(L & 1)) && (S += cb(z[L ^ 1]), 0);
(R & 1) && (S += cb(z[R ^ 1]), 0);
}
return S;
}
}
int bl;
long long glo1[N], glo2[N];
namespace SEG2
{
int n, sz;
long long mx[1 << 22];
inline void build()
{
n = bl - 2, sz = 1;
while (sz <= n + 1) {
sz <<= 1;
}
for (int i = 1; i <= n; ++i) {
mx[i + sz] = max(glo1[i], glo2[i]);
}
for (int i = (n + sz) >> 1; i; --i) {
mx[i] = max(mx[i << 1], mx[i << 1 | 1]);
}
return;
}
inline void modify(int x)
{
mx[x + sz] = max(glo1[x], glo2[x]);
x += sz;
while (x >>= 1) {
mx[x] = max(mx[x << 1], mx[x << 1 | 1]);
}
return;
}
inline long long query(int L, int R)
{
long long res = 0;
for (L += sz - 1, R += sz + 1; L ^ R ^ 1; L >>= 1, R >>= 1) {
(!(L & 1)) && (res = max(res, mx[L ^ 1]));
((R & 1)) && (res = max(res, mx[R ^ 1]));
}
return res;
}
}
long long Sa[N], Sb[N];
inline tuple<long long, long long, long long, long long, long long> operator + (tuple<long long, long long, long long, long long, long long> x, tuple<long long, long long, long long, long long, long long> y);
struct DS
{
int len, sz;
typedef long long LL;
LL *SuA, *SuB, *MxA, *MxB, *S;
friend inline tuple<LL, LL, LL, LL, LL> operator + (tuple<LL, LL, LL, LL, LL> x, tuple<LL, LL, LL, LL, LL> y)
{
auto &[A, B, C, D, E] = x;
auto &[F, G, H, I, J] = y;
return {A + F, B + G, max(H, C + F), max(D, I + B), max({E + F, J + B, H + D})};
}
inline void Build()
{
int t = len, z = 1;
while (z <= t + 1) {
z <<= 1;
}
sz = z;
SuA = myMalloc(len + sz + 1, 1);
SuB = myMalloc(len + sz + 1, 1);
MxA = myMalloc(len + sz + 1, 1);
MxB = myMalloc(len + sz + 1, 1);
S = myMalloc(len + sz + 1, 1);
for (int i = 1; i <= len; ++i) {
SuA[i + sz] = MxA[i + sz] = Sa[i];
SuB[i + sz] = MxB[i + sz] = Sb[i];
}
for (int k = (len + sz) >> 1; k; --k) {
SuA[k] = SuA[k << 1] + SuA[k << 1 | 1];
SuB[k] = SuB[k << 1] + SuB[k << 1 | 1];
MxA[k] = max(MxA[k << 1 | 1], SuA[k << 1 | 1] + MxA[k << 1]);
MxB[k] = max(MxB[k << 1], SuB[k << 1] + MxB[k << 1 | 1]);
S[k] = max({S[k << 1] + SuA[k << 1 | 1], S[k << 1 | 1] + SuB[k << 1], MxA[k << 1 | 1] + MxB[k << 1]});
}
return;
}
inline long long query(int L, int R)
{
tuple<LL, LL, LL, LL, LL> tA = {0, 0, -1e18, -1e18, -1e18}, tB = {0, 0, -1e18, -1e18, -1e18};
for (L += sz - 1, R += sz + 1; L ^ R ^ 1; L >>= 1, R >>= 1) {
(!(L & 1)) && (tA = tA + tuple<LL, LL, LL, LL, LL>{SuA[L ^ 1], SuB[L ^ 1], MxA[L ^ 1], MxB[L ^ 1], S[L ^ 1]}, 0);
((R & 1)) && (tB = tuple<LL, LL, LL, LL, LL>{SuA[R ^ 1], SuB[R ^ 1], MxA[R ^ 1], MxB[R ^ 1], S[R ^ 1]} + tB, 0);
}
auto [A, B, C, D, E] = tA + tB;
return E;
}
inline void modifyA(int k, int y)
{
k += sz;
SuA[k] += y, MxA[k] += y;
while (k >>= 1) {
SuA[k] = SuA[k << 1] + SuA[k << 1 | 1];
MxA[k] = max(MxA[k << 1 | 1], SuA[k << 1 | 1] + MxA[k << 1]);
S[k] = max({S[k << 1] + SuA[k << 1 | 1], S[k << 1 | 1] + SuB[k << 1], MxA[k << 1 | 1] + MxB[k << 1]});
}
return;
}
inline void modifyB(int k, int y)
{
k += sz;
SuB[k] += y, MxB[k] += y;
while (k >>= 1) {
SuB[k] = SuB[k << 1] + SuB[k << 1 | 1];
MxB[k] = max(MxB[k << 1], SuB[k << 1] + MxB[k << 1 | 1]);
S[k] = max({S[k << 1] + SuA[k << 1 | 1], S[k << 1 | 1] + SuB[k << 1], MxA[k << 1 | 1] + MxB[k << 1]});
}
return;
}
inline void modify(int type, int x, int y)
{
if (!type) {
modifyA(x, y);
} else {
modifyB(x, y);
}
return;
}
} SEG3[N];
inline long long calc(int wh, int L = 0, int R = 0, long long V = 0)
{
if (!L) {
return SEG3[wh].S[1];
}
if (SEG1::query(L, R + C) <= V) {
return V;
}
L -= (wh - 1) * C, R -= (wh - 1) * C;
return SEG3[wh].query(L, R) + SEG1::querySum((wh - 1) * C + R + 1, wh * C + L - 1);
}
signed main()
{
fread(I, 1, 40000038, stdin);
n = read(), m = read(), C = read();
bl = (n - 1) / C + 1;
for (int i = 1; i <= n; ++i) {
a[i] = read();
}
SEG1::build();
for (int i = 2; i <= bl - 1; ++i) {
long long s = 0, mx = 0;
for (int j = (i - 1) * C + 1; j <= i * C && j <= n; ++j) {
mx = max(mx, s = max(s, 0ll) + a[j]);
}
glo1[i] = mx;
}
for (int i = 1; i <= bl - 1; ++i) {
SEG3[i].len = min((i + 1) * C, n) - i * C;
for (int j = 1; j <= SEG3[i].len; ++j) {
Sa[j] = a[j + (i - 1) * C];
}
for (int j = 1; j <= SEG3[i].len; ++j) {
Sb[j] = a[j + i * C];
}
SEG3[i].Build();
}
for (int i = 2; i <= bl - 2; ++i) {
glo2[i] = calc(i);
}
SEG2::build();
while (m--) {
int opt = read(), L = read(), R = read();
if (opt == 1) {
if (a[L] == R) {
continue;
}
int D = R - a[L];
a[L] = R;
SEG1::modify(L);
int bel = (L - 1) / C + 1;
long long flg = max(glo1[bel], glo2[bel]);
if (bel >= 2 && bel <= bl - 1) {
glo1[bel] = SEG1::query((bel - 1) * C + 1, bel * C);
}
if (bel >= 2) {
SEG3[bel - 1].modify(1, L - (bel - 1) * C, D);
}
if (bel <= bl - 1) {
SEG3[bel].modify(0, L - (bel - 1) * C, D);
}
if (bel >= 3) {
long long tv = max(glo1[bel - 1], glo2[bel - 1]);
glo2[bel - 1] = calc(bel - 1);
if (max(glo1[bel - 1], glo2[bel - 1]) != tv && bel <= bl - 1) {
SEG2::modify(bel - 1);
}
}
if (bel >= 2 && bel <= bl - 2) {
glo2[bel] = calc(bel);
}
if (bel >= 2 && bel <= bl - 2 && flg != max(glo1[bel], glo2[bel])) {
SEG2::modify(bel);
}
} else {
if (R - L + 1 <= C) {
print(SEG1::query(L, R));
*o++ = '\n';
continue;
}
int bel = (L - 1) / C + 1, ber = (R - 1) / C + 1;
long long res = (bel + 2 >= ber ? 0ll : SEG2::query(bel + 1, ber - 2));
if (bel + 1 != ber) {
res = max(res, glo1[ber - 1]);
}
res = max({res, SEG1::query(L, L + C - 1), SEG1::query(R - C + 1, R)});
if (ber == bel + 1) {
res = max(res, calc(bel, L, R - C, res));
} else {
res = max({res, calc(bel, L, bel * C, res), calc(ber - 1, (ber - 2) * C + 1, R - C, res)});
}
print(res);
*o++ = '\n';
}
}
fwrite(O, 1, o - O, stdout);
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3616kb
input:
5 6 3 0 -5 -3 8 -3 2 3 5 1 2 5 2 1 5 1 4 -3 2 3 5 2 1 5
output:
8 10 0 5
result:
ok 4 number(s): "8 10 0 5"
Test #2:
score: 0
Accepted
time: 239ms
memory: 94108kb
input:
200000 500000 1 387060158 961744470 37167782 737122872 -532977662 1604246 -30977399 871848791 444997246 454204578 -813187501 -660394286 448014171 -835115276 -631880452 887715308 258530352 805589560 -414653327 -156732249 -335096199 -80266237 367896009 738406627 -903652056 446120866 415658444 -1347916...
output:
999902477 999981999 999343404 999847372 999957587 998160312 999981999 999981999 999981999 999980061 999981999 999981999 999981999 999876122 999981999 999996602 999981999 999981999 999981999 999723649 999981999 999957587 999896087 999981999 999981999 999981999 999981999 999981999 999957587 999981999 ...
result:
ok 250051 numbers
Test #3:
score: -100
Wrong Answer
time: 216ms
memory: 56764kb
input:
200000 500000 5 802774074 383481934 -295470374 285359286 751657057 197444479 626916547 -828168464 288373833 -493446966 -208422769 956745384 919286225 959643271 -176531848 -380256966 357111771 -50890039 -637284768 -337010918 259019684 752475630 -259898780 98620995 -704832505 -532710796 -971600790 -84...
output:
4544135313 4544135313 4322308420 2770770271 4544135313 4544135313 4322308420 4386413596 4386413596 3731128239 4322308420 4100474957 4266013548 4544135313 4386413596 4094787940 4386413596 4386413596 4386413596 4322308420 4266013548 4386413596 4322308420 4544135313 4386413596 4322308420 4322308420 385...
result:
wrong answer 3rd numbers differ - expected: '4443416295', found: '4322308420'