QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#383193 | #5414. Stop, Yesterday Please No More | shepherd | AC ✓ | 593ms | 413984kb | C++20 | 8.5kb | 2024-04-09 03:33:50 | 2024-04-09 03:33:50 |
Judging History
answer
#include <bits/stdc++.h>
#include <vector>
#pragma GCC optimize("O3,unroll-loops")
#ifdef LLOCAL
#include "debug.h"
#else
#define var(...)
#define debugArr(...)
#endif
using namespace std;
#define len(a) static_cast<int>((a).size())
#define present(c, x) (c.find(x) != c.end())
#define printDecimal(d) std::cout << std::setprecision(d) << std::fixed
using ll = long long;
using ull = unsigned long long;
using ld = long double;
constexpr const int iinf = 1e9 + 7;
constexpr const ll inf = 1e18;
constexpr const ll mod = 1'000'000'007;
template <typename Fun>
class y_combinator_result {
Fun fun_;
public:
template <typename T>
explicit y_combinator_result(T&& fun) : fun_(std::forward<T>(fun)) {}
template <typename... Args>
decltype(auto) operator()(Args&&... args) {
return fun_(std::ref(*this), std::forward<Args>(args)...);
}
};
template <typename Fun>
decltype(auto) y_combinator(Fun&& fun) {
return y_combinator_result<std::decay_t<Fun>>(std::forward<Fun>(fun));
}
pair<vector<vector<int>>, int> construct_grid(int n, int m, const string& s) {
vector<vector<int>> grid_2d(n, vector<int>(m));
int u = 0, l = 0, r = m - 1, d = n - 1;
int bu = 0, bl = 0, br = m - 1, bd = n - 1;
for (auto c : s) {
switch (c) {
case 'U': {
if (bu == u) {
bu++;
}
u++, d++;
break;
}
case 'L': {
if (bl == l) {
bl++;
}
l++, r++;
break;
}
case 'R': {
if (br == r) {
br--;
}
r--, l--;
break;
}
case 'D': {
if (bd == d) {
bd--;
}
d--, u--;
break;
}
default: {
assert(false);
}
}
}
int oob = n * m;
if (bu <= bd && bl <= br) {
for (int i = bu; i <= bd; i++) {
for (int j = bl; j <= br; j++) {
grid_2d[i][j] = 1;
oob--;
}
}
}
return make_pair(grid_2d, oob);
}
vector<double> flatten_and_cast(const vector<vector<int>>& grid) {
vector<double> ret;
for (const auto& elem : grid) {
for (auto& x : elem) {
ret.push_back(x);
}
}
return ret;
}
struct motif_data {
vector<vector<int>> motif;
int px, py, mn, mm;
};
motif_data construct_motif(int n, int m, const string& s) {
int px = 0, py = 0, cx = 0, cy = 0;
for (auto c : s) {
switch (c) {
case 'D': {
if (cx == 0)
px++;
else
cx--;
break;
}
case 'U': {
cx++;
break;
}
case 'R': {
if (cy == 0)
py++;
else
cy--;
break;
}
case 'L': {
cy++;
break;
}
}
}
vector<vector<int>> motif(px + 1, vector<int>(py + 1));
cx = px, cy = py;
motif[cx][cy] = 1;
int num_col = py + 1;
for (auto c : s) {
switch (c) {
case 'D': {
cx--;
assert(cx >= 0);
break;
}
case 'U': {
cx++;
break;
}
case 'L': {
cy++;
break;
}
case 'R': {
cy--;
assert(cy >= 0);
break;
}
default: {
assert(false);
}
}
while (len(motif) <= cx) motif.emplace_back();
while (len(motif[cx]) <= cy) motif[cx].push_back(0);
motif[cx][cy] = 1;
num_col = max(num_col, cy + 1);
}
for (int i = 0; i < len(motif); i++) {
while (len(motif[i]) < num_col) motif[i].push_back(0);
}
return motif_data{motif, px, py, len(motif), num_col};
}
vector<vector<int>> pad_grid(const vector<vector<int>>& grid, int pt, int pb,
int pl, int pr) {
vector<vector<int>> ret;
for (int i = 0; i < pt; i++) {
ret.emplace_back();
for (int j = 0; j < pl; j++) {
ret.back().push_back(0);
}
for (int j = 0; j < len(grid[0]); j++) {
ret.back().push_back(0);
}
for (int j = 0; j < pr; j++) {
ret.back().push_back(0);
}
}
for (int i = 0; i < len(grid); i++) {
ret.emplace_back();
for (int j = 0; j < pl; j++) {
ret.back().push_back(0);
}
for (int j = 0; j < len(grid[i]); j++) {
ret.back().push_back(grid[i][j]);
}
for (int j = 0; j < pr; j++) {
ret.back().push_back(0);
}
}
for (int i = 0; i < pb; i++) {
ret.emplace_back();
for (int j = 0; j < pl; j++) {
ret.back().push_back(0);
}
for (int j = 0; j < len(grid[0]); j++) {
ret.back().push_back(0);
}
for (int j = 0; j < pr; j++) {
ret.back().push_back(0);
}
}
return ret;
}
namespace kactl {
typedef vector<ll> vl;
typedef complex<double> C;
void fft(vector<C>& a) {
int n = len(a), L = 31 - __builtin_clz(n);
static vector<complex<long double>> R(2, 1);
static vector<C> rt(2, 1); // (^ 10% faster if double)
for (static int k = 2; k < n; k *= 2) {
R.resize(n);
rt.resize(n);
auto x = polar(1.0L, acos(-1.0L) / k);
for (int i = k; i < 2 * k; i++)
rt[i] = R[i] = i & 1 ? R[i / 2] * x : R[i / 2];
}
vector<int> rev(n);
for (int i = 0; i < n; i++) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
for (int i = 0; i < n; i++)
if (i < rev[i]) swap(a[i], a[rev[i]]);
for (int k = 1; k < n; k *= 2)
for (int i = 0; i < n; i += 2 * k)
for (int j = 0; j < k; j++) {
// C z = rt[j+k] * a[i+j+k]; // (25% faster if hand-rolled) ///
// include-line
auto x = (double*)&rt[j + k],
y = (double*)&a[i + j + k]; /// exclude-line
C z(x[0] * y[0] - x[1] * y[1],
x[0] * y[1] + x[1] * y[0]); /// exclude-line
a[i + j + k] = a[i + j] - z;
a[i + j] += z;
}
}
vector<double> conv(const vector<double>& a, const vector<double>& b) {
if (a.empty() || b.empty()) return {};
vector<double> res(len(a) + len(b) - 1);
int L = 32 - __builtin_clz(len(res)), n = 1 << L;
vector<C> in(n), out(n);
copy(begin(a), end(a), begin(in));
for (int i = 0; i < len(b); i++) in[i].imag(b[i]);
fft(in);
for (C& x : in) x *= x;
for (int i = 0; i < n; i++) out[i] = in[-i & (n - 1)] - conj(in[i]);
fft(out);
for (int i = 0; i < len(res); i++) res[i] = imag(out[i]) / (4 * n);
return res;
}
// template <int M>
// vl convMod(const vl& a, const vl& b) {
// if (a.empty() || b.empty()) return {};
// vl res(len(a) + len(b) - 1);
// int B = 32 - __builtin_clz(len(res)), n = 1 << B, cut = int(sqrt(M));
// vector<C> L(n), R(n), outs(n), outl(n);
// for (int i = 0; i < len(a); i++) L[i] = C((int)a[i] / cut, (int)a[i] %
// cut); for (int i = 0; i < len(b); i++) R[i] = C((int)b[i] / cut, (int)b[i]
// % cut); fft(L), fft(R); for (int i = 0; i < n; i++) {
// int j = -i & (n - 1);
// outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
// outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
// }
// fft(outl), fft(outs);
// for (int i = 0; i < len(res); i++) {
// ll av = ll(real(outl[i]) + .5), cv = ll(imag(outs[i]) + .5);
// ll bv = ll(imag(outl[i]) + .5) + ll(real(outs[i]) + .5);
// res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
// }
// return res;
// }
} // namespace kactl
int main() {
std::ios_base::sync_with_stdio(false);
cin.tie(0);
int t;
cin >> t;
while (t--) {
int n, m, k;
cin >> n >> m >> k;
string s;
cin >> s;
auto [grid, oob] = construct_grid(n, m, s);
auto [motif, px, py, mn, mm] = construct_motif(n, m, s);
int pad_bottom = 0, pad_right = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
pad_bottom = max(pad_bottom, i + mn - px - 1 - len(grid) + 1);
pad_right = max(pad_right, j + mm - py - 1 - len(grid[0]) + 1);
}
}
grid = pad_grid(grid, px, pad_bottom, py, pad_right);
int target = n * m - oob - k;
if (target < 0) {
cout << 0 << '\n';
continue;
}
n = len(grid), m = len(grid[0]);
for (int i = 0; i < len(motif) - 1; i++) {
while (len(motif[i]) < m) motif[i].push_back(0);
}
auto grid_1d = flatten_and_cast(grid);
auto motif_1d = flatten_and_cast(motif);
reverse(motif_1d.begin(), motif_1d.end());
auto d = kactl::conv(grid_1d, motif_1d);
int ret = 0;
for (int i = 0; i + mn <= n; i++) {
for (int j = 0; j + mm <= m; j++) {
if (fabs(d[i * m + j + len(motif_1d) - 1] - target) <= 1e-8) {
ret++;
}
}
}
cout << ret << '\n';
}
}
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3912kb
input:
3 4 5 3 ULDDRR 4 5 0 UUUUUUU 4 5 10 UUUUUUU
output:
2 20 0
result:
ok 3 number(s): "2 20 0"
Test #2:
score: 0
Accepted
time: 60ms
memory: 10620kb
input:
1060 19 12 0 UDLDDUUUUDDDLLRDUDUURULUUUDRDUDRDRLRLRLULULLLDLDDRLUUUURUUUDDRLLRUUUDULURUULLRDRLRDDURDUUURRRLURLRUULRRUDURDLUUURDLURDDLUUURDDRLLURRDLRUDLRDRLLRRDRDDLDRURRRLUDULLLRUUDLRRURRDLLRRRDLLRDDDLRLRURURDDDL 11 1 0 UR 3 18 33 UDRLR 17 11 132 RLDRDLDRUU 6 10 13 UULUDDLRDLUUDLDD 1 15 0 D 6 20 50 D...
output:
228 11 20 99 18 15 34 240 15 0 0 13 14 18 26 16 1 19 108 8 2 2 3 7 0 30 16 21 0 8 10 9 15 5 320 11 7 3 0 0 12 0 11 0 0 14 0 22 36 51 23 7 6 4 2 48 28 8 63 22 49 13 10 4 108 10 18 44 0 15 9 0 4 30 14 99 105 10 14 17 0 66 10 11 28 52 34 56 33 14 56 90 14 0 121 3 48 30 36 13 0 30 7 8 3 11 16 45 20 34 0...
result:
ok 1060 numbers
Test #3:
score: 0
Accepted
time: 155ms
memory: 113744kb
input:
1 1000 1000 979065 DDUULULUDULLULLDLUULURRLDURLRDLRRUURUUUDLRLUUDUUDUDLLDDDULU
output:
958416
result:
ok 1 number(s): "958416"
Test #4:
score: 0
Accepted
time: 341ms
memory: 205020kb
input:
1 1000 1000 943471 LRLDLURLDLRDRDUULULRDDLLRURDUURLLDDLDLDDLLLUUURLDRUDRLLUUUUUDLUUDLURURRDLRLRRRLULRRULURLRRDLDRLUDRRLDDLUDRRLLUDLLLRDULRRRRLDUUDRDLULUUUUDRRDULUDLLUUDLDURDRRLRRLDRLDDRURURLUULRRLDLLRLRDRRUULDLDLULLDLLRULLRUULURDURRLUUDUULLULDLRUDDLRLRLLUDDDLLLUDRRLDDULRRURRDURDDRDLLULRLULURLRDLLURD...
output:
889224
result:
ok 1 number(s): "889224"
Test #5:
score: 0
Accepted
time: 593ms
memory: 413984kb
input:
1 1000 1000 315808 LLRURURRDDDULLDDUDRDLRLLLDDDLUDRDURLDULRLRULUUDLUULUUDULLLLDDURLDUULUUDLLDLLDRUDUULRLLRLRUURLRLULLDDLLDUDLLRUUDRLDLUULDLLDRRRURDULLDRRRDURURDRLDURURUDLURLDURRLRRUDUDURDRLRRRDLRRURLURUDRRLDLRULLDLUURDURLURLLRDLRDRUURURDRUDUUUDLRRLUDLUUDUDDRRDUULUUDDRLLULDUUDRURRDRLULRLULDURLURUDLLD...
output:
426
result:
ok 1 number(s): "426"
Test #6:
score: 0
Accepted
time: 190ms
memory: 113476kb
input:
1 1000 1000 986018 LLULDRRRDDURRUDRUURRRDDLUUDUULRULRDULLD
output:
972180
result:
ok 1 number(s): "972180"
Test #7:
score: 0
Accepted
time: 437ms
memory: 206232kb
input:
1 1000 1000 945431 DDRRURUUDLDULLDLDDLRULDLLDDRRLUDRLUURRLDRDLURUURRRRLRURLURULLLDRDDDRRRLDLDRLRDDUURRURDDDLRUURLUURLRDUDDDLLDUURLDLUDLLRRDUUDRLUULLUULDLURRUDLUURLRLRURDUDRRRDRLRUDLLLLURLULRLRLRRDDUDLRLDUUUULUDLLURRLURRDLRURRRULDDLLLRLRDLUDLLDDRULDUULRDDUUDDUDLURDULLDUDDLULRULDRLDDULDULLUDLULUDRURRR...
output:
893000
result:
ok 1 number(s): "893000"
Test #8:
score: 0
Accepted
time: 445ms
memory: 227968kb
input:
1 1000 1000 460035 RDDUURDULDDLDDLDDLDRRULLRLUURLURRRDRUDDDRDLDLDULUDLRLLRRLRRURRRDLRLUDRDURULDRRDDDDDDLRLDULUULDUDRLLUUUURUUDRURLRRULDRDRUUUUULULRURDDRLRULLLRDRRULUDDUDDLLLRDRUULUUDDRLURDLDURRDLRRLDRRUDLUULRDLURULLDLRLLDDURDUDLDULDLLRULRDLRLUULLUDRUDDDLRRDULULLRUURLUURRLLLLRLDRURLLRLDRRDDDRLUUUUDUL...
output:
417
result:
ok 1 number(s): "417"
Test #9:
score: 0
Accepted
time: 186ms
memory: 113312kb
input:
1 1000 1000 992010 LLLLLDLDRRLUDRR
output:
1999
result:
ok 1 number(s): "1999"
Test #10:
score: 0
Accepted
time: 373ms
memory: 205476kb
input:
1 1000 1000 919600 LLDLRUDRLURRUDRDRRDLRUDLRRRUUULDLDURDDDRUURRRLLURULDRLRLULLULDRULULRLRRRURLDDDRUUULUDLLLLRRLLRDDRDULUDLRLRLDRLUDUDURRULUULLDULUULDLLDRDULUDLDULDDUULDDRRURDRDULRRLDRRDUURURRLUUUDRRLDRRDDLULRDDLDLLRLRLLLRULUUUURRRLDLRUDRRLRURDRLDULLLUDRULLDLDRRUUDLRRLLRLDDLUDLRLRRURUUDUULUDURDURRLUU...
output:
944
result:
ok 1 number(s): "944"
Test #11:
score: 0
Accepted
time: 470ms
memory: 209948kb
input:
1 1000 1000 804351 DLRLDLLLLUDRDURRLDDRRLRUULURURDDDRDLRUDDULRRLLULURDRUUDRURRLURRRDRURRDRLULRDLRRDRRDDUDLUDLDULRUURRLRUUDRLDDRDDUUDULUULUUUDLRURULLRDUUDDDRRLDRUDDUUDRURLRDRUDLRLDDRRLLRLRDUDDULLULRLLDDUDDDUULDULLRRULULDUUULUDRRDRLUDLRRDDUDLRRDDLDLDRUULRRRRRLRLULLRDDRDDDULDRRURUDDLURLRLURLRDRULUDULUU...
output:
640000
result:
ok 1 number(s): "640000"