QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#381525 | #2429. Conquer The World | ckiseki | TL | 6ms | 3956kb | C++20 | 14.1kb | 2024-04-07 18:35:36 | 2024-04-07 18:35:36 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
#define all(x) begin(x), end(x)
#ifdef CKISEKI
#include <experimental/iterator>
#define safe cerr<<__PRETTY_FUNCTION__<<" line "<<__LINE__<<" safe\n"
#define debug(a...) debug_(#a, a)
#define orange(a...) orange_(#a, a)
void debug_(auto s, auto ...a) {
cerr << "\e[1;32m(" << s << ") = (";
int f = 0;
(..., (cerr << (f++ ? ", " : "") << a));
cerr << ")\e[0m\n";
}
void orange_(auto s, auto L, auto R) {
cerr << "\e[1;33m[ " << s << " ] = [ ";
using namespace experimental;
copy(L, R, make_ostream_joiner(cerr, ", "));
cerr << " ]\e[0m\n";
}
#else
#define safe ((void)0)
#define debug(...) safe
#define orange(...) safe
#endif
bool chmin(auto &a, auto b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <typename Flow = int64_t, typename Cost = int64_t>
struct network_simplex {
explicit network_simplex(int V) : V(V), node(V + 1) {}
int add(int u, int v, Flow lower, Flow upper, Cost cost) {
assert(0 <= u && u < V && 0 <= v && v < V && lower <= upper);
return edge.push_back({{u, v}, lower, upper, cost}), E++;
}
int add_edge(int u, int v, Flow upper, Cost cost) {
return add(u, v, 0, upper, cost);
}
int add_node() { return node.emplace_back(), V++; }
void add_supply(int u, Flow supply) { node[u].supply += supply; }
void add_demand(int u, Flow demand) { node[u].supply -= demand; }
void set_supply(int u, Flow supply) { node[u].supply = supply; }
void update_edge(int e, Flow lower, Flow upper, Cost cost) {
edge[e].lower = lower, edge[e].upper = upper, edge[e].cost = cost;
}
auto get_supply(int u) const { return node[u].supply; }
auto get_potential(int u) const { return node[u].pi; }
auto get_flow(int e) const { return edge[e].flow; }
auto reduced_cost(int e) const {
auto [u, v] = edge[e].node;
return edge[e].cost + node[u].pi - node[v].pi;
}
// Get excess for every vertex: excess(u) = flow(out of u) - flow(into u)
auto get_excesses() const {
vector<Flow> excess(V);
for (int e = 0; e < E; e++) {
auto [u, v] = edge[e].node;
excess[u] += edge[e].flow;
excess[v] -= edge[e].flow;
}
return excess;
}
template <typename CostSum = int64_t>
auto get_circulation_cost() const {
CostSum sum = 0;
for (int e = 0; e < E; e++) {
sum += edge[e].flow * CostSum(edge[e].cost);
}
return sum;
}
void verify() const {
for (int e = 0; e < E; e++) {
assert(edge[e].lower <= edge[e].flow && edge[e].flow <= edge[e].upper);
assert(edge[e].flow == edge[e].lower || reduced_cost(e) <= 0);
assert(edge[e].flow == edge[e].upper || reduced_cost(e) >= 0);
}
}
// Run as circulation: find a feasible circulation and fail if one doesn't exist.
// Also checks for zero supply sum. Usually this is not what you want.
bool mincost_circulation() {
static constexpr bool INFEASIBLE = false, OPTIMAL = true;
// Assert supply sum is zero
Flow sum_supply = 0;
for (int u = 0; u < V; u++) {
sum_supply += node[u].supply;
}
if (sum_supply != 0) {
return INFEASIBLE;
}
run();
// Assert zero flow through artificial edges
for (int e = E; e < E + V; e++) {
if (edge[e].flow != 0) {
edge.resize(E);
return INFEASIBLE;
}
}
edge.resize(E);
return OPTIMAL;
}
// Run as mincost maxflow: ignore extra artificial flow and non-zero supply sum
// You must set supply at the source(s) and demand at the sink(s) (inf for maxflow)
// The excess at a supply/source node u will be in the range [0,supply[u]].
// The excess at a demand/sink node u will be in the range [supply[u],0].
Flow mincost_flow() {
run();
Flow maxflow = 0;
for (int e = E; e < E + V; e++) {
if (edge[e].node[1] == V) {
maxflow += edge[e].upper - edge[e].flow;
}
}
edge.resize(E);
return maxflow;
}
// Implementation
enum ArcState : int8_t { STATE_UPPER = -1, STATE_TREE = 0, STATE_LOWER = 1 };
auto signed_reduced_cost(int e) const { return edge[e].state * reduced_cost(e); }
struct int_lists {
int L, N;
vector<int> next, prev;
// L: lists are [0...L), N: integers are [0...N)
explicit int_lists(int L = 0, int N = 0) { assign(L, N); }
int rep(int l) const { return l + N; }
int head(int l) const { return next[rep(l)]; }
int tail(int l) const { return prev[rep(l)]; }
void push_front(int l, int n) { meet(rep(l), n, head(l)); }
void push_back(int l, int n) { meet(tail(l), n, rep(l)); }
void erase(int n) { meet(prev[n], next[n]); }
void clear() {
iota(begin(next) + N, end(next), N);
iota(begin(prev) + N, end(prev), N);
}
void assign(int L, int N) {
this->L = L, this->N = N;
next.resize(N + L), prev.resize(N + L), clear();
}
private:
inline void meet(int u, int v) { next[u] = v, prev[v] = u; }
inline void meet(int u, int v, int w) { meet(u, v), meet(v, w); }
};
struct Node {
int parent, pred;
Flow supply;
Cost pi;
};
struct Edge {
int node[2];
Flow lower, upper;
Cost cost;
Flow flow = 0;
ArcState state = STATE_LOWER;
};
int V, E = 0;
vector<Node> node;
vector<Edge> edge;
int_lists children;
int next_arc = 0, block_size = 0;
vector<int> bfs, perm; // scratchpad for bfs and upwards walk / random permutation
void run() {
// Remove non-zero lower bounds and compute artif_cost as sum of all costs
Cost artif_cost = 1;
for (int e = 0; e < E; e++) {
auto [u, v] = edge[e].node;
edge[e].flow = 0;
edge[e].state = STATE_LOWER;
edge[e].upper -= edge[e].lower;
node[u].supply -= edge[e].lower;
node[v].supply += edge[e].lower;
artif_cost += edge[e].cost < 0 ? -edge[e].cost : edge[e].cost;
}
edge.resize(E + V);
bfs.resize(V + 1);
children.assign(V + 1, V + 1);
// Add root<->node artificial edges with initial supply for feasible flow
int root = V;
node[root] = {-1, -1, 0, 0};
for (int u = 0, e = E; u < V; u++, e++) {
node[u].parent = root, node[u].pred = e;
children.push_back(root, u);
auto supply = node[u].supply;
if (supply >= 0) {
node[u].pi = -artif_cost;
edge[e] = {{u, root}, 0, supply, artif_cost, supply, STATE_TREE};
} else {
node[u].pi = artif_cost;
edge[e] = {{root, u}, 0, -supply, artif_cost, -supply, STATE_TREE};
}
}
// We want to, hopefully, find a pivot edge in O(sqrt(E))
// This should be <E to check different sets of edges in each select()
// Otherwise we are vulnerable to simplex killers
block_size = max(int(ceil(sqrt(E + V))), min(5, V + 1));
next_arc = 0;
// Random permutation of the edges; helps with wide graphs and killer test cases
static mt19937 rng(random_device{}());
perm.resize(E + V);
iota(begin(perm), end(perm), 0);
shuffle(begin(perm), end(perm), rng);
// Pivot until we're done
int in_arc = select_pivot_edge();
while (in_arc != -1) {
pivot(in_arc);
in_arc = select_pivot_edge();
}
// Restore flows and supplies
for (int e = 0; e < E; e++) {
auto [u, v] = edge[e].node;
edge[e].flow += edge[e].lower;
edge[e].upper += edge[e].lower;
node[u].supply += edge[e].lower;
node[v].supply -= edge[e].lower;
}
}
int select_pivot_edge() {
// lemon-like block search, check block_size edges and pick the best one
Cost minimum = 0;
int in_arc = -1;
int count = block_size, seen_edges = E + V;
for (int& e = next_arc; seen_edges-- > 0; e = e + 1 == E + V ? 0 : e + 1) {
int x = perm[e];
if (minimum > signed_reduced_cost(x)) {
minimum = signed_reduced_cost(x);
in_arc = x;
}
if (--count == 0 && minimum < 0) {
break;
} else if (count == 0) {
count = block_size;
}
}
return in_arc;
}
void pivot(int in_arc) {
// Find join node (lca of u_in and v_in)
auto [u_in, v_in] = edge[in_arc].node;
int a = u_in, b = v_in;
while (a != b) {
a = node[a].parent == -1 ? v_in : node[a].parent;
b = node[b].parent == -1 ? u_in : node[b].parent;
}
int join = a;
// Orient edge so that we add flow to source->target
int source = edge[in_arc].state == STATE_LOWER ? u_in : v_in;
int target = edge[in_arc].state == STATE_LOWER ? v_in : u_in;
enum OutArcSide { SAME_EDGE, SOURCE_SIDE, TARGET_SIDE };
Flow flow_delta = edge[in_arc].upper;
OutArcSide side = SAME_EDGE;
int u_out = -1;
// Go up the cycle from source to the join node
for (int u = source; u != join && flow_delta; u = node[u].parent) {
int e = node[u].pred;
bool edge_down = u == edge[e].node[1];
Flow d = edge_down ? edge[e].upper - edge[e].flow : edge[e].flow;
if (flow_delta > d) {
flow_delta = d;
u_out = u;
side = SOURCE_SIDE;
}
}
// Go up the cycle from target to the join node
for (int u = target; u != join && (flow_delta || side != TARGET_SIDE);
u = node[u].parent) {
int e = node[u].pred;
bool edge_up = u == edge[e].node[0];
Flow d = edge_up ? edge[e].upper - edge[e].flow : edge[e].flow;
if (flow_delta >= d) {
flow_delta = d;
u_out = u;
side = TARGET_SIDE;
}
}
// Augment along the cycle
if (flow_delta) {
auto delta = edge[in_arc].state * flow_delta;
edge[in_arc].flow += delta;
for (int u = edge[in_arc].node[0]; u != join; u = node[u].parent) {
int e = node[u].pred;
edge[e].flow += u == edge[e].node[0] ? -delta : +delta;
}
for (int u = edge[in_arc].node[1]; u != join; u = node[u].parent) {
int e = node[u].pred;
edge[e].flow += u == edge[e].node[0] ? +delta : -delta;
}
}
if (side == SAME_EDGE) {
edge[in_arc].state = ArcState(-edge[in_arc].state);
return;
}
// Replace out_arc with in_arc in the spanning tree
int out_arc = node[u_out].pred;
edge[in_arc].state = STATE_TREE;
edge[out_arc].state = edge[out_arc].flow ? STATE_UPPER : STATE_LOWER;
// Put u_in on the same side as u_out
u_in = side == SOURCE_SIDE ? source : target;
v_in = side == SOURCE_SIDE ? target : source;
// Walk up from u_in to u_out, then fix parent/pred/child pointers backwards
int i = 0, S = 0;
for (int u = u_in; u != u_out; u = node[u].parent) {
bfs[S++] = u;
}
for (i = S - 1; i >= 0; i--) {
int u = bfs[i], p = node[u].parent;
children.erase(p);
children.push_back(u, p);
node[p].parent = u;
node[p].pred = node[u].pred;
}
children.erase(u_in);
children.push_back(v_in, u_in);
node[u_in].parent = v_in;
node[u_in].pred = in_arc;
// Adjust potentials in the subtree of u_in (pi_delta is not 0)
Cost current_pi = reduced_cost(in_arc);
Cost pi_delta = u_in == edge[in_arc].node[0] ? -current_pi : +current_pi;
bfs[0] = u_in;
for (i = 0, S = 1; i < S; i++) {
int u = bfs[i];
node[u].pi += pi_delta;
for (int v = children.head(u); v != children.rep(u); v = children.next[v]) {
bfs[S++] = v;
}
}
}
};
//template <typename F, typename C>
//struct MinCostCirculation {
// struct ep { int to; F flow; C cost; };
// int n; vector<int> vis; int visc;
// vector<int> fa, fae; vector<vector<int>> g;
// vector<ep> e; vector<C> pi;
// MinCostCirculation(int n_) : n(n_), vis(n), visc(0), g(n), pi(n) {}
// void add_edge(int u, int v, F fl, C cs) {
// g[u].emplace_back((int)e.size());
// e.emplace_back(v, fl, cs);
// g[v].emplace_back((int)e.size());
// e.emplace_back(u, 0, -cs);
// }
// C phi(int x) {
// if (fa[x] == -1) return 0;
// if (vis[x] == visc) return pi[x];
// vis[x] = visc;
// return pi[x] = phi(fa[x]) - e[fae[x]].cost;
// }
// int lca(int u, int v) {
// for (; u != -1 || v != -1; swap(u, v)) if (u != -1) {
// if (vis[u] == visc) return u;
// vis[u] = visc; u = fa[u];
// }
// return -1;
// }
// void pushflow(int x, C &cost) {
// int v = e[x ^ 1].to, u = e[x].to; ++visc;
// if (int w = lca(u, v); w == -1) {
// while (v != -1)
// swap(x ^= 1, fae[v]), swap(u, fa[v]), swap(u, v);
// } else {
// int z = u, dir = 0; F f = e[x].flow;
// vector<int> cyc = {x};
// for (int d : {0, 1})
// for (int i = (d ? u : v); i != w; i = fa[i]) {
// cyc.push_back(fae[i] ^ d);
// if (chmin(f, e[fae[i] ^ d].flow)) z = i, dir = d;
// }
// for (int i : cyc) {
// e[i].flow -= f; e[i ^ 1].flow += f;
// cost += f * e[i].cost;
// }
// if (dir) x ^= 1, swap(u, v);
// while (u != z)
// swap(x ^= 1, fae[v]), swap(u, fa[v]), swap(u, v);
// }
// }
// void dfs(int u) {
// vis[u] = visc;
// for (int i : g[u])
// if (int v = e[i].to; vis[v] != visc and e[i].flow)
// fa[v] = u, fae[v] = i, dfs(v);
// }
// C simplex() {
// fa.assign(g.size(), -1); fae.assign(g.size(), -1);
// C cost = 0; ++visc; dfs(0);
// for (int fail = 0; fail < ssize(e); )
// for (int i = 0; i < ssize(e); i++)
// if (e[i].flow and e[i].cost < phi(e[i ^ 1].to) - phi(e[i].to))
// fail = 0, pushflow(i, cost), ++visc;
// else ++fail;
// return cost;
// }
//};
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int n;
cin >> n;
//MinCostCirculation<int, int64_t> flow(n + 2);
network_simplex<int, int64_t> flow(n + 2);
const int S = 0, T = n + 1;
constexpr int INF = 1'000'000;
constexpr int64_t INF64 = 1'000'000'000LL;
for (int i = 1; i < n; ++i) {
int u, v, w;
cin >> u >> v >> w;
flow.add_edge(u, v, INF, w);
flow.add_edge(v, u, INF, w);
}
int demand_sum = 0;
for (int i = 1; i <= n; ++i) {
int supply, demand;
cin >> supply >> demand;
flow.add_edge(S, i, supply, 0);
flow.add_edge(i, T, demand, 0);
demand_sum += demand;
}
int la = flow.add_edge(T, S, demand_sum, -INF64);
//auto c = flow.simplex();
//auto f = flow.e.back().flow;
flow.mincost_circulation();
auto f = flow.get_flow(la);
auto c = flow.get_circulation_cost();
debug(f, c);
cout << c + f * INF64 << '\n';
return 0;
}
Details
Test #1:
score: 100
Accepted
time: 1ms
memory: 3632kb
Test #2:
score: 0
Accepted
time: 1ms
memory: 3644kb
Test #3:
score: 0
Accepted
time: 1ms
memory: 3804kb
Test #4:
score: 0
Accepted
time: 1ms
memory: 3636kb
Test #5:
score: 0
Accepted
time: 1ms
memory: 3864kb
Test #6:
score: 0
Accepted
time: 1ms
memory: 3592kb
Test #7:
score: 0
Accepted
time: 1ms
memory: 3636kb
Test #8:
score: 0
Accepted
time: 1ms
memory: 3652kb
Test #9:
score: 0
Accepted
time: 1ms
memory: 3808kb
Test #10:
score: 0
Accepted
time: 1ms
memory: 3656kb
Test #11:
score: 0
Accepted
time: 1ms
memory: 3616kb
Test #12:
score: 0
Accepted
time: 4ms
memory: 3944kb
Test #13:
score: 0
Accepted
time: 2ms
memory: 3856kb
Test #14:
score: 0
Accepted
time: 4ms
memory: 3956kb
Test #15:
score: 0
Accepted
time: 6ms
memory: 3776kb
Test #16:
score: 0
Accepted
time: 1ms
memory: 3928kb
Test #17:
score: 0
Accepted
time: 6ms
memory: 3856kb
Test #18:
score: 0
Accepted
time: 3ms
memory: 3888kb
Test #19:
score: 0
Accepted
time: 1ms
memory: 3924kb
Test #20:
score: 0
Accepted
time: 3ms
memory: 3852kb
Test #21:
score: -100
Time Limit Exceeded