QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#346507#8306. Boring Problemhos_lyricWA 0ms3856kbC++147.8kb2024-03-08 16:57:292024-03-08 16:57:29

Judging History

你现在查看的是最新测评结果

  • [2024-03-08 16:57:29]
  • 评测
  • 测评结果:WA
  • 用时:0ms
  • 内存:3856kb
  • [2024-03-08 16:57:29]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

constexpr unsigned MO = 1000000007;
using Mint = ModInt<MO>;

// square matrix
using Mat = vector<vector<Mint>>;
Mat zero(int n) {
  return Mat(n, vector<Mint>(n, 0));
}
Mat identity(int n) {
  Mat a(n, vector<Mint>(n, 0));
  for (int i = 0; i < n; ++i) a[i][i] = 1;
  return a;
}
Mat inverse(Mat a) {
  const int n = a.size();
  Mat b(n, vector<Mint>(n, 0));
  for (int i = 0; i < n; ++i) b[i][i] = 1;
  for (int h = 0; h < n; ++h) {
    for (int i = h; i < n; ++i) if (a[i][h]) {
      swap(a[h], a[i]);
      swap(b[h], b[i]);
      break;
    }
    assert(a[h][h]);
    const Mint s = a[h][h].inv();
    for (int j = h + 1; j < n; ++j) a[h][j] *= s;
    for (int j = 0; j < n; ++j) b[h][j] *= s;
    for (int i = h + 1; i < n; ++i) {
      const Mint t = a[i][h];
      if (t) {
        for (int j = h + 1; j < n; ++j) a[i][j] -= t * a[h][j];
        for (int j = 0; j < n; ++j) b[i][j] -= t * b[h][j];
      }
    }
  }
  for (int h = n; --h >= 0; ) for (int i = 0; i < h; ++i) {
    const Mint t = a[i][h];
    if (t) for (int j = 0; j < n; ++j) b[i][j] -= t * b[h][j];
  }
  return b;
}

////////////////////////////////////////////////////////////////////////////////


/*
  F[i](x) := \sum[n] Pr[end with T[i] exactly in n steps] x^n
  G(x) := \sum[n] Pr[yet in n steps] x^n
  
  force terminate by adding T[i]
  G(x) Pr[T[i]] x^M + \sum[m] [S[$-m, $) = T[i][0, m)] Pr[T[i][m, M)] x^M
  = \sum[j] \sum[m] [T[j][M-m, M) = T[i][0, m)] F[j](x) Pr[T[i][m, M)] x^(M-m)
  
  system for F[j](1), G(1)
  want (r.h.s) mod x^M |[x=1]
*/

char buf[10010];

int N, M, K;
vector<Mint> P;
vector<string> T;
string R;

int main() {
  for (; ~scanf("%d%d%d", &N, &M, &K); ) {
    P.resize(K);
    for (int k = 0; k < K; ++k) {
      int p;
      scanf("%d", &p);
      P[k] = p / Mint(100);
    }
    T.resize(N);
    for (int i = 0; i < N; ++i) {
      scanf("%s", buf);
      T[i] = buf;
    }
    scanf("%s", buf);
    R = buf;
    const int RLen = R.size();
    
    sort(T.begin(), T.end());
    T.erase(unique(T.begin(), T.end()), T.end());
    N = T.size();
    
    vector<vector<int>> fail(N, vector<int>(M + 1));
    for (int i = 0; i < N; ++i) {
      int y = fail[i][0] = -1;
      for (int x = 0; x < M; ++x) {
        for (; ~y && T[i][y] != T[i][x]; y = fail[i][y]) {}
        fail[i][x + 1] = ++y;
      }
    }
    
    vector<vector<Mint>> tail(N, vector<Mint>(M + 1));
    for (int i = 0; i < N; ++i) {
      tail[i][M] = 1;
      for (int x = M; --x >= 0; ) {
        tail[i][x] = P[T[i][x] - 'a'] * tail[i][x + 1];
      }
    }
    // sum in fail tree
    auto tailSum = tail;
    for (int i = 0; i < N; ++i) {
      for (int x = 1; x <= M; ++x) {
        tailSum[i][x] += tailSum[i][fail[i][x]];
      }
    }
    
    Mat A = zero(N + 1);
    for (int i = 0; i < N; ++i) {
      for (int j = 0; j < N; ++j) {
        int y = 0;
        for (int x = 0; x < M; ++x) {
          for (; ~y && T[i][y] != T[j][x]; y = fail[i][y]) {}
          ++y;
        }
        for (; y; y = fail[i][y]) {
          // T[j][M - y, M) = T[i][0, y)
          A[i][j] += tail[i][y];
        }
      }
      A[i][N] -= tail[i][0];
    }
    // \sum[j] F[j](1) = 1
    for (int j = 0; j < N; ++j) {
      A[N][j] += 1;
    }
    
    const auto invA = inverse(A);
// cerr<<"A = "<<A<<endl;
// cerr<<"A^-1 = "<<invA<<endl;
    vector<Mint> ans(RLen + 1, invA[N][N]);
    vector<int> ma(RLen + 1, 0);
    
    for (int i = 0; i < N; ++i) {
      // change in i-th row
      int y = 0;
      for (int q = 1; q <= RLen; ++q) {
        for (; ~y && T[i][y] != R[q - 1]; y = fail[i][y]) {}
        ++y;
        if (y == M) {
          ma[q] = 1;
        }
        ans[q] += invA[N][i] * tailSum[i][y];
      }
    }
    
// cerr<<"ans = "<<ans<<endl;
// cerr<<"ma = "<<ma<<endl;
    for (int q = 0; q <= RLen; ++q) if (ma[q]) {
      fill(ans.begin() + q, ans.end(), 0);
      break;
    }
    for (int q = 0; q <= RLen; ++q) {
      ans[q] += q;
    }
    for (int q = 1; q <= RLen; ++q) {
      printf("%u\n", ans[q].x);
    }
  }
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 0
Wrong Answer
time: 0ms
memory: 3856kb

input:

2 2 2
50 50
aa
bb
ababaa

output:

2
3
4
5
6
6

result:

wrong answer 1st numbers differ - expected: '3', found: '2'